Abstract:
The invention relates to a method for preparing polyarylethersulfone-polyalkylene oxide block copolymers (PPC) comprising the polycondensation of a reaction mixture (RG) comprising the components: (A1) at least one aromatic dihalogen compound, (B1) at least one aromatic dihydroxyl compound, (B2) at least one polyalkylene oxide having at least two hydroxyl groups, (C) at least one aprotic polar solvent and (D) at least one metal carbonate, where the reaction mixture (RG) does not comprise any substance which forms an azeotrope with water.
Abstract:
The present invention relates to a process for the production of low-halogen-content polybiphenyl sulfone polymers, to the resultant polybiphenyl sulfone polymers, to polybiphenyl sulfone polymers having less than 400 ppm content of polymer-bonded halogen, to thermoplastic molding compositions comprising these polybiphenyl sulfone polymers, and to their use for the production of moldings, of fibers, of films, of membranes, or of foams.
Abstract:
A polyarylene ether sulfone comprising endgroups of formula (I), a process for its manufacture, a molding composition comprising the polyarylene ether sulfone, use of the molding composition and fiber, film or shaped article produced using the molding composition.
Abstract:
Membrane comprising a block copolymer comprising polyarylene ether blocks and polyalkylene oxide blocks, wherein said polyalkylene oxide blocks comprise at least one polyethylene oxide segment and at least one segment of at least one polyalkylene oxide that is different from polyethylene oxide.
Abstract:
The present invention relates to a method of forming a polyarylene ether sulfone polymer by converting a reaction mixture (RG) comprising a dihalogen component (A1), a dihydroxy component (B1) and potassium carbonate (C1) having a volume-average particle size of
Abstract:
The present invention relates to molding compositions comprising (A) from 29 to 89% by weight of at least one polyarylene ether sulfone having an average number of phenolic end groups per chain of from 0 to 0.2, (B) from 0.5 to 20% by weight of a thermotropic polymer, (C) from 0.5 to 10% by weight of a polyarylene ether having predominantly OH end groups, (D) from 10 to 70% by weight of at least one fibrous or particulate filler, (E) from 0 to 40% by weight of additives or processing aids, where the total of the proportions by weight is 100% by weight, based on the thermoplastic molding composition.
Abstract:
The present invention is directed to thin film composite membranes (TFC membranes) comprising a substrate layer (S) based on a sulfonated polyphenylenesulfone, and a polyamide film layer (F) and further to a method for their preparation. Furthermore, the present invention is directed to osmosis processes, in particular to forward osmosis (FO) processes, using said membrane.
Abstract:
The present invention is directed to positively charged nanofiltration (NF) membranes comprising a substrate layer (S) based on a sulfonated polymer and a positively charged film layer (F) on top of said substrate, and to a method for their preparation. Furthermore, the present invention is directed to nanofiltration processes making use of said composite membrane.
Abstract:
A polyarylene ether comprising in polymerized form A) at least one tri- or higher functional compound and B) isosorbide. isomannide, isoidide or a mixture thereof, wherein the polyarylene ether is a polyarylene ether sulfone or a polyarylene ether ketone, ¢ process for its preparation and its use in the preparation of a coating, film, fiber, foam, membrane or molded article.
Abstract:
Membrane comprising a block copolymer comprising polyarylene ether blocks and polyalkylene oxide blocks, wherein said polyalkylene oxide blocks comprise at least one polyethylene oxide segment and at least one segment of at least one polyalkylene oxide that is different from polyethylene oxide