Abstract:
A composition comprises the reaction product of a dithiophosphate derivative and an amine. The reaction product is present in the composition in an amount of at least about 25 wt. %. The composition may include additional components. A method of forming the composition comprises the step of combining the dithiophosphate derivative and the amine to form the composition. A method of increasing thermal stability of a dithiophosphate derivative comprises the step of combining the dithiophosphate derivative and an amine. The dithiophosphate derivative can decompose to form hydrogen sulfide (H2S). However, the amine substantially prevents thermal decomposition of the dithiophosphate derivative. An example of the dithiophosphate derivative is 3-(di-isobutoxy-thiophosphorylsulfanyl)-2-methyl-propanoic acid. An example of the amine is ditridecyl amine. The composition can be used for a variety of applications. For example, the composition can be used as an antiwear compound/additive in lubricants, metalworking fluids, hydraulic fluids, etc.
Abstract:
This disclosure is directed to a lubricant composition having improved compatibility with fluoropolymer seals. The lubricant composition includes a base oil and a sulfonate ester. The disclosure is also directed to an additive package for a lubricant composition that provides improved compatibility with fluoropolymer seals. The additive package includes the sulfonate ester. The disclosure is also directed to a method of improving compatibility of a lubricant composition with a fluoropolymer seal disposed in an internal combustion engine. The sulfonate ester improves the compatibility with fluoropolymer seals of the resultant lubricant composition.
Abstract:
A lubricant composition includes a base oil, an alkoxylated amide, an ester, and an anti-wear agent including phosphorus. The alkoxylated amide and ester have general formulas (I) and (II), respectively. The lubricant composition may be further defined as a racing oil composition. Also disclosed is a method for maximizing the effectiveness of a friction modifier in a racing oil composition thus increasing the fuel economy of a racing vehicle. The method includes providing the racing oil composition and lubricating an internal combustion engine of a racing vehicle to increase the fuel economy of the racing vehicle.
Abstract:
A lubricant composition is substantially free of water and includes a base oil present in an amount of greater than 85 parts by weight per 100 parts by weight of the lubricant composition, includes an antioxidant, and includes one or more alkylethercarboxylic acid corrosion inhibitor(s) present in an amount of from 0.01 to 1 weight percent based on a total weight of said lubricant composition. The one or more alkylethercarboxylic acid corrosion inhibitor(s) have the formula; wherein R is a straight or branched chain C6-C18 alkyl group and n is a number of from 0 to 5.
Abstract:
A lubricant composition includes a base oil, an alkoxylated amide, an ester, and an anti-wear agent including phosphorus. The alkoxylated amide and ester have general formulas (I) and (II), respectively. The lubricant composition may be further defined as a racing oil composition.Also disclosed is a method for maximizing the effectiveness of a friction modifier in a racing oil composition thus increasing the fuel economy of a racing vehicle. The method includes providing the racing oil composition and lubricating an internal combustion engine of a racing vehicle to increase the fuel economy of the racing vehicle.
Abstract:
A lubricant composition includes a base oil, an alkoxylated amide, an ester, and an anti-wear agent including phosphorus. The alkoxylated amide and ester have general formulas (I) and (II), respectively. The lubricant composition may be further defined as a racing oil composition. Also disclosed is a method for maximizing the effectiveness of a friction modifier in a racing oil composition thus increasing the fuel economy of a racing vehicle. The method includes providing the racing oil composition and lubricating an internal combustion engine of a racing vehicle to increase the fuel economy of the racing vehicle.
Abstract:
Disclosed herein is a process for lubricating an internal combustion engine with a lubricant composition that may be substantially ash free. The ashless lubricant composition described herein may comprise primary antioxidants, such as aminic diphenyl amines, alkylated phenyl-naphthyl amines, and phenolic antioxidants. The ashless lubricant composition described herein may also comprise sulfur containing products that may work as secondary antioxidants. Other components such as ashless antiwear components, dispersants, pour point depressants, friction modifiers, and metal deactivators may also be used to formulate an ashless lubricant composition according to an embodiment.
Abstract:
A composition comprises the reaction product of a dithiophosphate derivative and an amine. The reaction product is present in the composition in an amount of at least about 25 wt. %. The composition may include additional components. A method of forming the composition comprises the step of combining the dithiophosphate derivative and the amine to form the composition. A method of increasing thermal stability of a dithiophosphate derivative comprises the step of combining the dithiophosphate derivative and an amine. The dithiophosphate derivative can decompose to form hydrogen sulfide (H2S). However, the amine substantially prevents thermal decomposition of the dithiophosphate derivative. An example of the dithiophosphate derivative is 3-(di-isobutoxy-thiophosphorylsulfanyl)-2-methyl-propanoic acid. An example of the amine is ditridecyl amine. The composition can be used for a variety of applications. For example, the composition can be used as an antiwear compound/additive in lubricants, metalworking fluids, hydraulic fluids, etc.
Abstract:
A lubricant composition includes a base oil and an additive package. The additive package includes a seal compatibility additive chosen from a halide seal compatibility additive, an epoxide seal compatibility additive, a boroxine seal compatibility additive, a sulfonate ester seal compatibility additive, and combinations thereof. The alkoxylated amide and the ester are set forth in general formulas A and B, respectively: In general formulas A and B, each R13, RII, RIII, and RIV, is, independently, a linear or branched, saturated or unsaturated, hydrocarbyl group. In addition, at least one of RII and RIII include an alkoxy group, and RIV includes an amine group.
Abstract:
A lubricant composition includes a base oil, an alkoxylated amide, an ester, and an anti-wear agent including phosphorus. The alkoxylated amide and ester have general formulas (I) and (II), respectively. The lubricant composition may be further defined as a racing oil composition. Also disclosed is a method for maximizing the effectiveness of a friction modifier in a racing oil composition thus increasing the fuel economy of a racing vehicle. The method includes providing the racing oil composition and lubricating an internal combustion engine of a racing vehicle to increase the fuel economy of the racing vehicle.