Abstract:
The present invention relates to a process for preparing acrylic acid from acetic acid and formaldehyde, which comprises (a) provision of a stream S1 comprising acetic acid and formaldehyde, where the molar ratio of acetic acid to formaldehyde in the stream S1 is in the range from 0.5:1 to 2:1; (b) contacting of the stream S1 with an aldol condensation catalyst comprising vanadium, phosphorus and oxygen to give a stream S2 comprising acrylic acid, where, in (b), the space velocity WHSV is in the range from 0.35 to 7.0 kg/kg/h.
Abstract:
A process for preparing acrylic acid, comprising (i) providing a stream S4 comprising a formaldehyde source and acetic acid; (ii) contacting stream S4 with an aldol condensation catalyst comprising a zeolitic material comprising aluminum in the framework structure to obtain a stream S6 comprising acrylic acid, the framework structure of the zeolitic material in (ii) comprising YO2 and Al2O3, and Y being a tetravalent element; where the total content of alkali metal and alkaline earth metal in the zeolitic material in (ii), calculated as alkali metal oxide and alkaline earth metal oxide, is from 0% to 0.1% by weight, based in each case on the total weight of the zeolitic material, and where the aldol condensation catalyst in (ii) comprises, outside the framework structure of the zeolitic material present therein, from 0% to 1% by weight of vanadium, based on vanadium as vanadium(V) oxide.
Abstract translation:一种制备丙烯酸的方法,包括(i)提供包含甲醛源和乙酸的料流S4; (ii)使流体S4与包含框架结构中包含铝的沸石材料的醛醇缩合催化剂接触以获得包含丙烯酸的流S6,(ii)中的沸石材料的框架结构包含YO 2和Al 2 O 3,Y是 四价元素 其中(ii)中的沸石材料中的碱金属和碱土金属的总含量以碱金属氧化物和碱土金属氧化物计算为0〜0.1重量%,基于每种情况下的总重量 沸石材料,并且其中(ii)中的醛醇缩合催化剂在其中存在的沸石材料的骨架结构外包含以钒为氧化钒(V)的钒为0至1重量%的钒。
Abstract:
The present invention relates to a process for preparing acrylic acid comprising (i) providing a stream comprising a formaldehyde source and acetic acid and (ii) contacting this stream with an aldol condensation catalyst comprising a zeolitic material, wherein the framework structure of the zeolitic material in (ii) includes Si and O, and has a molar Al:Si ratio of 0:1 to 0.001:1, and wherein the framework structure of the zeolitic material in (ii), in addition to Si and any Al, comprises one or more elements selected from the group consisting of tetravalent elements Y other than Si and trivalent elements X other than Al.