Abstract:
The present invention relates to a method for preparing hydrocarbon double acids using a cyclic hydrocarbon oxidation catalyst, wherein adipic acid and dodecanedioic acid may be produced with high yield while solving the problem of environmental pollution, the adipic acid and the dodecanedioic acid being prepared by using an oxidation reaction of a cyclohexane-cyclohexanone mixture and an oxidation reaction of a cyclododecane-cyclododecanone mixture, respectively, in the presence of a vanadium phosphate oxide-based catalyst and/or a cobalt-manganese oxide-based catalyst.
Abstract:
A shaped catalyst body for heterogeneously catalyzed reactions of organic compounds in the gas-phase in fixed-bed reactors, containing an element from group 3 to 12 of the Periodic Table of the Elements, and having a three-lobed structure with a lateral surface around the lobes, a top cover and a bottom cover, as well as three continuous holes running from one cover side to the other cover side, wherein each hole is assigned to one lobe and wherein the cover sides have outwardly shaped arches, its production and a process for its use in the heterogeneously catalyzed reaction of an organic compound in the gas phase.
Abstract:
The present invention relates to a catalyst containing a vanadium-phosphorus oxide and an alkali metal, wherein the proportion by weight of alkali metal in the vanadium-phosphorus oxide is in the range from 10 to 400 ppm, based on the total weight of the vanadium-phosphorus oxide, a process for producing it and also the use of the catalyst for the gas-phase oxidation of hydrocarbons, in particular for preparing maleic anhydride.
Abstract:
The invention relates to a catalyst composition comprising a mixed oxide of vanadium, titanium, and phosphorus modified with alkali metal. The titanium component is derived from a water-soluble, redox-active organo-titanium compound. The catalyst composition is highly effective at facilitating the vapor-phase condensation of formaldehyde with acetic acid to generate acrylic acid, particularly using an industrially relevant aqueous liquid feed.
Abstract:
Disclosed herein is a mixed phosphate catalyst for converting lactic acid to acrylic acid, which is characterized by a high conversion of lactic acid, a high selectivity for acrylic acid, a high yield of acrylic acid, and correspondingly low selectivity and molar yields for undesired by-products. This is achieved with a particular class of catalysts defined by a mixture of metal-containing phosphate salts. Further, the catalyst is believed to be stable and active for lengthy periods heretofore unseen in the art for such dehydration processes.
Abstract:
The invention relates to a catalyst composition comprising a mixed oxide of vanadium, titanium, and phosphorus modified with alkali metal. The titanium component is derived from a water-soluble, redox-active organo-titanium compound. The catalyst composition is highly effective at facilitating the vapor-phase condensation of formaldehyde with acetic acid to generate acrylic acid, particularly using an industrially relevant aqueous liquid feed.
Abstract:
A process for preparing acrylic acid from methanol and acetic acid, comprising (i) contacting a gaseous stream S0 comprising methanol, oxygen and inert gas with an oxidation catalyst to obtain a gaseous stream S1 comprising formaldehyde and inert gas; (ii) removing at least a portion of the inert gas present in S1 from at least a portion of the formaldehyde present in S1 by absorbing this formaldehyde in an absorbent to obtain a gaseous stream S2 comprising the portion of the inert gas removed, and to obtain a stream S3 comprising absorbent and absorbate comprising formaldehyde; (iii) optionally removing a portion or the entirety of the absorbent present in stream S3, such that a stream S3a remains from stream S3, and producing a stream S4 from at least stream S3 or stream S3a and a stream S5 comprising acetic acid; and (iv) contacting stream S4 in gaseous form with an aldol condensation catalyst to obtain a gaseous stream S6 comprising acrylic acid.
Abstract:
A process for preparing a catalyst by selecting an active catalyst and contacting the active catalyst with one or more fluids containing an organic solvent or mixture of organic solvents. In one embodiment, each organic solvent has a dielectric constant within a range of about 5 to about 55 when measured at a temperature of 20° C. to 25° C. The catalyst thus prepared may be used in a process for preparing maleic anhydride.
Abstract:
The present invention concerns a process for the production of an aldehyde compound by an oxidation reaction of an alcohol compound in the presence of a mesostructured vanadium phosphorus mixed oxide catalyst, at a temperature comprised between 50° C. and 200° C., in presence of an oxidant. The reaction medium may also comprise a solvent.
Abstract:
A process has been developed for preparing a Fischer-Tropsch catalyst precursor and a Fischer-Tropsch catalyst made from the precursor. The process includes contacting a gamma alumina catalyst support material with a first solution containing a compound containing zinc and optionally containing P, Ti, V, Co, Ga, Ge, Mo, W and/or Pr to obtain a modified catalyst support material. The modified catalyst support material is calcined at a temperature of at least 500° C. The calcined modified catalyst support has a pore volume of at least 0.4 cc/g. The modified catalyst support is less soluble in acid solutions than an equivalent unmodified catalyst support. The modified catalyst support is contacted with a second solution which includes a precursor compound of an active cobalt catalyst component to obtain a catalyst precursor. The catalyst precursor is reduced to activate the catalyst precursor to obtain the Fischer-Tropsch catalyst. The catalyst has enhanced hydrothermal stability as measured by losing no more than 20% of its pore volume when exposed to water vapor.