Abstract:
A process for preparing an oxidic material comprising a zeolitic material having framework type AEI and a framework structure comprising a tetravalent element Y, a trivalent element X, and O, the process comprising preparing a synthesis mixture comprising water, a source of Y, a source of X comprising sodium, an AEI framework structure directing agent, and a source of sodium other than the source of X; and heating the synthesis mixture obtained from (i) to a temperature in the range of from 100 to 180° C. and keeping the synthesis mixture under autogenous pres-sure at a temperature in this range for a time in the range of at least 6 h, obtaining the oxidic material comprising a zeolitic material having framework type AEI and a framework structure comprising a tetravalent element Y, a trivalent element X, and O, comprised in its mother liquor; wherein the AEI framework structure directing agent according to (i) comprises a N, N-diethyl-2,6-dimethylpiperidinium cation.
Abstract:
The present invention relates to a process for the preparation of a zeolitic material comprising YO2 in its framework structure, wherein Y stands for a tetravalent element, wherein said process comprises the steps of: (1) providing a mixture comprising one or more sources for YO2, one or more fluoride containing compounds, and one or more structure directing agents; (2) crystallizing the mixture obtained in step (1) for obtaining a zeolitic material comprising YO2 in its framework structure; wherein the mixture provided in step (1) and crystallized in step (2) contains 35 wt.-% or less of H2O based on 100 wt.-% of YO2 contained in the mixture provided in step (1) and crystallized in step (2), as well as to a zeolitic material comprising YO2 in its framework structure obtainable and/or obtained according to said process, and to a zeolitic material per se comprising SiO2 in its framework structure, wherein in the 29Si MAS NMR spectrum of the as-synthesized zeolitic material the ratio of the total integration value of the peaks associated to Q3 signals to the total integration value of the peaks associated to Q4 signals is in the range of from 0:100 to 20:80, including the use of the aforementioned zeolitic materials.
Abstract:
A zeolitic material having the ITH framework structure type.A process for the preparation of a zeolitic material having the ITH framework structure type, the process comprising: (1) preparing a mixture comprising one or more specific organotemplates as structure direct-ing agents, one or more sources of YO2, optionally one or more sources of X2O3, seed crystals, and a solvent system, wherein Y is tetravalent element and X is a trivalent ele-ment,(2) heating the mixture obtained in (1) for crystallizing a zeolitic material having the ITH framework structure type comprising YO2 and optionally X2O3 in its framework structure; wherein the one or more organotemplates comprise a specific polymeric cation.
Abstract:
The present invention relates to a zeolitic material having the IWR type framework structure, wherein the zeolitic material comprises YO2 and X2O3 in its framework structure, wherein Y is a tetravalent element and X is a trivalent element, and wherein the framework structure of the zeolitic material comprises less than 5 weight-% weight-% of Ge calculated as GeO2 and based on 100 weight-% weight-% of YO2 contained in the framework structure, and less than 5 weight-% weight-% of B calculated as B2O3 and based on 100 weight-% weight-% of X2O3 contained in the framework structure. Further, the present invention relates to a process for preparing a zeo-litic material having the IWR type framework structure, wherein the zeolitic material comprises YO2 and X2O3 in its framework structure, wherein Y is a tetravalent element and X is a trivalent element.
Abstract:
Described is a preparation method for zeolite molecular sieves by means of solid-state reactions without the usage of organic templates. The method comprises the following steps: grinding and mixing the solid raw materials comprising the silicon source, the aluminum source and the alkali source, transferring the obtained mixture into an autoclave, conducting the crystallization for a period of 5 hours-20 days at a temperature of 50-200° C. After filtering and drying the crystallized products, molecular sieves in a powder form can be obtained. The method provides different molecular sieves, including ZSM-5 zeolite, Beta zeolite, FAU zeolite, MOR zeolite, LTA zeolite, and GIS zeolite, with a high crystallinity and an adjustable Si/Al ratio within a certain range. The obtained products exhibit a high crystallinity and a high purity, and the method does not require the use of organic templates and solvents, which avoids unnecessary consumptions during the production, simplifies the synthetic process, and also increases the yield from the autoclave reactor.
Abstract:
Described is a preparation method for zeolite molecular sieves by means of solid-state reactions without the usage of organic templates. The method comprises the following steps: grinding and mixing the solid raw materials comprising the silicon source, the aluminum source and the alkali source, transferring the obtained mixture into an autoclave, conducting the crystallization for a period of 5 hours-20 days at a temperature of 50-200° C. After filtering and drying the crystallized products, molecular sieves in a powder form can be obtained. The method provides different molecular sieves, including ZSM-5 zeolite, Beta zeolite, FAU zeolite, MOR zeolite, LTA zeolite, and GIS zeolite, with a high crystallinity and an adjustable Si/Al ratio within a certain range. The obtained products exhibit a high crystallinity and a high purity, and the method does not require the use of organic templates and solvents, which avoids unnecessary consumptions during the production, simplifies the synthetic process, and also increases the yield from the autoclave reactor.