Abstract:
The present invention describes a system (1) for recovering liquid or free-flowing chemicals in a chemical plant (3), comprising at least two plant sections (3a, 3b), for each plant section (3a, 3b) at least one connecting device (5a, 5b) arranged at the lowest point, at least one common collecting line (7) which runs beneath the connecting devices (5a, 5b) and connects them to one another, at least one collecting vessel (9) arranged at the same height as or higher than the at least two plant sections (3a, 3b) and above the collecting line (7), at least one pump (11) provided in the collecting line (7) between the connecting devices (5a, 5b) and the collecting vessel (9) for drawing off the at least one liquid or free-flowing chemical combined in the collecting line (7) and introducing it into the collecting vessel (9).
Abstract:
A plant (1) for recovering acrylic acid, which includes: a absorption column (201); a dissociation column (205); a first line (101) connected to the dissociation column (205); a second line (102) connecting the absorption column (201) and the dissociation column (205); a third line (103) feeding a substream of the mother acid obtained in the crystallization into the dissociation column (205); a fourth line (104) connecting the crystallization apparatus and the absorption column (201); and a fifth line (105) connecting the dissociation column (205) and the absorption column (201).
Abstract:
A reactor system (1) having a reactor 3, at least one cooler (5) connected to the reactor (3), at least one pump (7) for circulating at least some of a liquid heat-transfer medium (9), wherein the pump (7) is connected to the reactor (3) and/or the at least one cooler (5), and a container (11) for collecting the liquid heat-transfer medium (9) is provided. The container (11) is connected to the reactor (3) and/or the at least one cooler (5) and is disposed substantially below the reactor (3) and/or the at least one cooler (5). Also provided are exothermic reactions which are conducted in the reactor system.
Abstract:
A process for recovering acrylic acid, including: a) division of a heated mother acid stream in direction of an absorption a condensation column and a dissociation column; b) feeding of a heated mother acid substream as runback to the dissociation column; c) feeding-in of at least one stripping gas stream to the dissociation column; d) feeding-in of a secondary component stream comprising oligomeric acrylic acid from the absorption column to the dissociation column; e) dissociation of part of oligomeric acrylic acid in the dissociation column to give monomeric acrylic acid; f) removal of secondary components comprised in the secondary component stream in the dissociation column; g) discharge of monomeric acrylic acid as gas mixture with introduced circulating stripping gas stream from the dissociation column; and h) feeding-in of the gas mixture to the absorption column.
Abstract:
A thermal separation process between a gas ascending in a separating column and a liquid descending in the separating column, which comprise (meth)acrylic monomers, wherein the separating column comprises a sequence of crossflow mass transfer trays, the crossflow mass transfer trays of which have passage orifices for the ascending gas in crossflow direction both in front of and beyond a downcomer for the descending liquid, and such crossflow mass transfer trays and one such crossflow mass transfer tray in a sequence of crossflow mass transfer trays present in a separating column.
Abstract:
The present invention relates to an apparatus (1) for separation of a target product from a liquid phase P comprising the target product, comprising at least one primary space (3) for a heat transfer medium W, at least one first feed unit (5a) and one first removal unit (5b) for the heat transfer medium W, at least one secondary space (7) for the liquid phase P, at least one second feed unit (9) for the liquid phase P, at least one crystallization surface (13) which divides the primary space (3) and the secondary space (7), at least one second removal unit (15) for the target product and at least one application unit (11) for a liquid phase P0 essentially directly to the crystallization surface (13) or the surfaces of lines that conduct the heat transfer medium W. The present invention further relates to a process for removing a target product from a liquid phase P comprising the target product.
Abstract:
A heat exchanger (1) contains: a bundle of at least two heat exchanger tubes (3), a heat exchanger housing (5) surrounding the bundle of heat exchanger tubes (3), wherein a liquid heat-transfer medium (7) is passed around the bundle of heat exchanger tubes (3) in the heat exchanger housing (5), a heat exchanger cap (9) sealing the top of the heat exchanger housing (5), a heat exchanger bottom (11) sealing the bottom of the heat exchanger housing (5), a feed point (13) for the heat-transfer medium (7), an outlet (15) for the heat-transfer medium (7), an emergency relief port (17) disposed in proximity to the heat exchanger cap (9). The heat exchanger (1) contains a safety device (19) disposed in proximity to the heat exchanger bottom (11).
Abstract:
The present invention relates to a plant for performance of heterogeneously catalyzed gas phase reactions. The plant entails a reactor, at least one line leading into the reactor for introduction of reactants into the reactor, at least one first feed for providing at least one first reactant A, which leads into the line, at least one second feed for providing at least one second reactant B, which leads into the line, at least one third feed for providing a cycle gas G, which leads into the line, a temperature control unit which is disposed in the line upstream of the reactor and is for controlling the temperature of the first reactant A and/or second reactant B and/or cycle gas G prior to entry into the reactor and at least one outlet for products, by-products and/or unreacted reactants from the gas phase reaction.
Abstract:
A thermal separation process between a gas ascending in a separating column and a liquid descending in the separating column, which comprise (meth)acrylic monomers, wherein the separating column comprises a sequence of crossflow mass transfer trays, the crossflow mass transfer trays of which have passage orifices for the ascending gas in crossflow direction both in front of and beyond a downcomer for the descending liquid, and such crossflow mass transfer trays and one such crossflow mass transfer tray in a sequence of crossflow mass transfer trays present in a separating column.
Abstract:
The present invention relates to a chimney tray (3) for a column (1) for thermal treatment of fluid mixtures, comprising a collecting tray (4) and at least two chimneys (5-1, 5-2) spaced apart horizontally in the collecting tray (4), where each chimney (5-1, 5-2) forms a vertically aligned chimney body (6-1, 6-2) which forms a passage orifice (7-1, 7-2) through the collecting tray (4), and has a cover unit (8-1, 8-2) arranged spaced apart from the chimney body (6-1, 6-2), and where the cover unit (8-1, 8-2) covers the respective passage orifices (7-1, 7-2) in the vertical direction. The chimney tray (3) of the invention is characterized by a screen (9) which extends around the chimney body (6-1) of a first chimney (5-1), with the lower annular edge (14) of the screen (9) below the upper edge (13) of the chimney body (6-1) of the first chimney (5-1) and the upper annular edge (11) of the screen (9) above the lower outer edge (12) of the cover unit (8-1) of the first chimney (5-1) or adjoining the lower outer edge (12) of the cover unit (8-1) of the first chimney (5-1).