Abstract:
The present invention relates to a process for the production of a reinforced polyamide (rP) in an extruder. In this process, a first mixture (M1), a second mixture (M2) and a third mixture (M3) are added into the extruder, and subsequently at least one carbon material is added to obtain a carbon containing polymerizable mixture (cpM) in the extruder. This carbon containing polymerizable mixture (cpM) is polymerized and subsequently devolatilized to obtain the reinforced polyamide (rP). Furthermore, the present invention relates to the reinforced polyamide (rP) obtainable by the inventive process.
Abstract:
A proppant includes a particle present in an amount of from 90 to 99.5 percent by weight and a polymeric coating disposed about the particle and present in an amount of from 0.5 to 10 percent by weight, based on the total weight of the proppant. The polymeric coating is formed from a curable composition comprising an isocyanate, an acrylate, and a polyol. A method of forming the proppant includes the steps of combining the isocyanate, the acrylate, and the polyol to form the curable composition, coating the particle with the curable composition, and curing the curable composition to form the polymeric coating.
Abstract:
The present invention relates to a process for the production of a reinforced polyamide (rP) in an extruder. In this process, a first mixture (M1), a second mixture (M2) and a third mixture (M3) are added into the extruder, and subsequently at least one carbon material is added to obtain a carbon containing polymerizable mixture (cpM) in the extruder. This carbon containing polymerizable mixture (cpM) is polymerized and subsequently devolatilized to obtain the reinforced polyamide (rP). Furthermore, the present invention relates to the reinforced polyamide (rP) obtainable by the inventive process.
Abstract:
A proppant includes a particle present in an amount of from 90 to 99.5 percent by weight and a polymeric coating disposed about the particle and present in an amount of from 0.5 to 10 percent by weight, based on the total weight of the proppant. The polymeric coating is formed from a curable composition comprising an isocyanate, an acrylate, and a polyol. A method of forming the proppant includes the steps of combining the isocyanate, the acrylate, and the polyol to form the curable composition, coating the particle with the curable composition, and curing the curable composition to form the polymeric coating.
Abstract:
A process for increasing the wetting rate of hydrophobic media with a wetting composition includes the steps of combining water and a heteric polyol to form the wetting composition, aging the wetting composition for an amount of time sufficient to increase the cloud point of the wetting composition to greater than 23° C., and applying the wetting composition to the hydrophobic media. The heteric polyol has the following formula: X[Y(CH2CH2O)a(CH2CHCH3O)bH]c wherein X is an organic core derived from an initiator having at least two hydroxyl groups; Y is a heteric copolymer comprising at least two different alkyleneoxy units selected from the group of ethyleneoxy units, propyleneoxy units, and butyleneoxy units; the subscripts a and b are independently zero or a positive integer and at least one of a or b must be a positive integer; and the subscript c is an integer of two or greater.
Abstract:
A method for increasing moisture retention in a soil includes applying an effective amount of an effective humectant composition to the soil. The effective humectant composition is identified by determining the average moisture content of the soil for the humectant compositions applied at a minimum humectant concentration level, a maximum humectant concentration level, and at a first concentration level between the minimum and the maximum humectant concentration level. An average slope curve is generated by plotting the determined average moisture content of the soil for each applied humectant concentration levels from the minimum humectant concentration level to the maximum humectant concentration level. An effective humectant composition is determined when the generated average slope curve provides an increasing average moisture content along the entirety of a length of the generated average slope curve and when the generated average slope curve has a p value of 0.05 or less.
Abstract:
A method for increasing moisture retention in a soil includes applying an effective amount of an effective humectant composition to the soil. The effective humectant composition is identified by determining the average moisture content of the soil for the humectant compositions applied at a minimum humectant concentration level, a maximum humectant concentration level, and at a first concentration level between the minimum and the maximum humectant concentration level. An average slope curve is generated by plotting the determined average moisture content of the soil for each applied humectant concentration levels from the minimum humectant concentration level to the maximum humectant concentration level. An effective humectant composition is determined when the generated average slope curve provides an increasing average moisture content along the entirety of a length of the generated average slope curve and when the generated average slope curve has a p value of 0.05 or less.