Abstract:
A pressure sensor, a manufacturing method thereof, a pressure sensing method and a display device are provided. The pressure sensor includes a first electrode, at least two supports on a first surface of the first electrode, an elastic composite electrode on a side of the supports facing away from the first electrode. Two adjacent supports of the supports, the elastic composite electrode and the first electrode define a compressible space, and the at least two supports are formed of an insulating material. The pressure sensor further comprises a second electrode on a side of the elastic composite electrode facing away from the first electrode and an organic light emitting layer between the first electrode and the second electrode, the organic light emitting layer being in contact with one of the first electrode and the second electrode. The pressure sensor has advantages of low power consumption, fast response and high sensitivity.
Abstract:
A display device and method for manufacturing the same. The display device includes an anode layer, hole injection layer, hole transport layer, light-emitting material layer, electron transport layer, electron injection layer and cathode layer arranged in sequence. The electron injection layer includes at least one electron injection layer. At least one high impedance layer is further arranged between at least one of the electron injection layers and the cathode layer. The resistivity of the electron injection layer and resistivity of the cathode layer are both smaller than the resistivity of the high impedance layer. The display device and the method for manufacturing the same can solve the problem of short circuit between cathode and anode of the display device caused by particles, significantly reduce the number of dark spots on the panel of the display device, and improve the panel yield of the display device.
Abstract:
The embodiments of the present disclosure disclose an electroluminescent device, a display device and a manufacturing method thereof. The electroluminescent device comprises: a substrate; a micro light emitting diode unit, configured to emit light of a first color in a first direction; and an organic light emitting diode unit, configured to emit light of a second color in the first direction, wherein the micro light emitting diode unit and the organic light emitting diode unit are disposed on the substrate in a stack, such that light of the first color and light of the second color are mixed to generate mixed light, and the first direction is a direction towards the substrate or a direction away from the substrate.
Abstract:
This disclosure relates to an electroluminescent display, a manufacture method thereof, and a display device. The electroluminescent display device comprises: a substrate, and a plurality of pixel units arranged in an array on the substrate. Each pixel unit comprises a plurality of sub-pixel units. Each pixel unit comprises at least two light-emitting layers connected in series. Furthermore, in each pixel unit, at least one light-emitting layer comprises at least two light-emitting units arranged in parallel and emitting light of different colors. Besides, in each pixel unit, at least one light-emitting unit is configured to be shared by two adjacent sub-pixel units of a corresponding pixel unit.
Abstract:
An array substrate may include a dielectric layer (1), a plurality of pixel units (2) on the dielectric layer (1), auxiliary light emitting elements (3), and a fingerprint recognition layer (4) on a side of the dielectric layer (1) opposite from the pixel units (2). Each of the pixel units (2) may comprise transparent display elements (21). The fingerprint recognition layer (4) may comprise fingerprint recognition elements (41). The fingerprint recognition elements (41) may be configured to receive light emitted by the auxiliary light emitting elements (3) and reflected by a touch control body (10) to identify fingerprint information.
Abstract:
A color filter substrate, a display panel and a display device arc provided. The color filter substrate includes a base substrate, the base substrate being divided into a plurality of pixel units, each pixel unit including a plurality of sub-pixel units, a color filter being arranged in each sub-pixel unit. At least one color filter of the plurality of sub-pixel units in each of the pixel units is made of an electrochromic material
Abstract:
The present disclosure relates to the field of display technologies and discloses a display substrate and a method for manufacturing the same, and a display device comprising the display substrate. The display substrate includes a planarization layer which is made of a material of organosilicon, and the organosilicon adheres the planarization layer to an organic material film and an inorganic material film. The method for manufacturing the display substrate includes a step of forming a planarization layer, wherein the planarization layer is configured for providing a planar surface; and the step of forming the planarization layer includes: preparing organosilicon which is used for forming the planarization layer; forming an organosilicon film via a film-forming process; and curing the organosilicon film to form the planarization layer.
Abstract:
A display substrate and a display device are disclosed. The display substrate includes a pixel defining layer, the pixel defining layer includes a pixel defining structure and a plurality of grooves, the plurality of grooves are arranged along a first direction, the groove extends along a second direction, and the second direction intersects with the first direction; the pixel defining structure includes a plurality of first defining portions in the groove and arranged along the second direction, and the first defining portion extends along the first direction; and two adjacent first defining portions in a same groove are configured to define a sub-pixel group, and the sub-pixel group includes a plurality of sub-pixels.
Abstract:
A method for manufacturing an array substrate includes: forming a pixel defining layer having a plurality of accommodating wells over a substrate, and forming a hydrophobic material layer over the pixel defining layer. A side wall of each accommodating well comprises a hydrophilic side surface. The hydrophilic side surface is partially covered by the hydrophobic material layer to thereby form an overlapped region having a hydrophobic outer surface and an exposed region having a hydrophilic outer surface. The overlapped region is on a side of the exposed region distal to the substrate. The array substrate manufactured thereby allows an organic functional layer to be evenly fabricated in each accommodating well of the pixel defining layer via inkjet printing.
Abstract:
The present application relates to a pixel structure, a method for manufacturing the same, a display panel and a display device. The pixel structure includes a plurality of sub-pixels, each of which has a triangular shape. Sub-pixels of four different colors constitute a pixel unit. Any two sub-pixels that have the same common triangle edge have different colors. Each row and each column of sub-pixels are composed of alternately arranged upright triangle sub-pixels and inverted triangle sub-pixels. Every adjacent six columns of sub-pixels constitute a group. Each row of sub-pixels includes sub-pixels of four different colors, and each group of sub-pixels has the same arrangement. The upright triangle sub-pixels are sub-pixels of the other three different colors, and all of the inverted triangular sub-pixels are sub-pixels of the first color.