Abstract:
The present disclosure provides to co-register an external image of a vessel to IVUS images captured within the vessel and provides graphical user interfaces to facilitate modification to the co-registration. Notably, the present disclosure provides for the co-registration even when the IVUS images are captured before the external image or before co-registration is initiated with the external image.
Abstract:
A method for real-time displaying of cross-sectional images during an intravascular ultrasound (IVUS) imaging procedure includes, during an intravascular ultrasound imaging procedure, receiving electrical signals from at least one transducer in a catheter as the at least one transducer rotates and moves longitudinally along a lumen of a patient blood vessel; during the intravascular ultrasound imaging procedure, processing the received electrical signals to form a series of cross-sectional images that are longitudinally-offset from one another along a length of the lumen; during the intravascular ultrasound imaging procedure, concurrently displaying i) a most recent image and ii) a previous image that is either a) selected by the operator or b) automatically selected as having a maximum or minimum of a selected image characteristic; and, during the intravascular ultrasound imaging procedure, updating the display of the most recent image as a new image from the series of cross-sectional images is processed.
Abstract:
A method for processing a sequence of ultrasound frames for display includes receiving a sequence of intravascular ultrasound (IVUS) frames of a vessel having a lumen, the sequence including a first frame and a second frame; determining one or more texture features for each of one or more regions of the first frame; determining at least one flow feature for each of the one or more regions by comparing the first and second frames; deriving a lumen border for the first frame using the one or more texture features and the at least one flow feature to characterize the one or more regions as within or outside of the lumen of the vessel; and displaying an ultrasound image of the first frame with the lumen border.
Abstract:
A medical imaging assembly includes an elongated catheter having a connector at the proximal end; an array of transducers on the distal end of the catheter; conductors electrically coupled to the array of transducers and in electrical communication with the connector of the catheter; and a control unit coupleable to the catheter to send and receive electrical signals between the control unit and the array of transducers through the connector of the catheter. The control unit has a processor to execute instructions including 1) selecting a first subset of M transmitting transducers and a second subset of N receiving transducers from the array of transducers, where N>M; and 2) for each of at least N transmit/receive cycles, a) directing the first subset of M transmitting transducers to transmit an acoustic signal; and b) directing the second subset of N receiving transducers to receive corresponding echo signals.
Abstract translation:医疗成像组件包括在近端具有连接器的细长导管; 在导管的远端上的一组换能器; 导体,电耦合到换能器阵列并与导管的连接器电连通; 以及控制单元,其可耦合到导管,以通过导管的连接器在控制单元和换能器阵列之间发送和接收电信号。 所述控制单元具有执行指令的处理器,所述指令包括1)从所述传感器阵列中选择M个发射换能器的第一子集和N个接收换能器的第二子集,其中N> M; 和2)对于至少N个发射/接收周期中的每一个,a)引导M个发射换能器的第一子集发射声信号; 以及b)指示N个接收换能器的第二子集接收相应的回波信号。
Abstract:
The present disclosure provides to process intravascular ultrasound (IVUS) images to identify key frames such as the proximal key frame, a distal key frame, and a minimal key frame from the IVUS images based on the raw lumen area, vessel area, and plaque burden. Ones of the key frames can be re-identified based on manipulation of other ones of the key frames.
Abstract:
The present disclosure provides to identify regions of a cardiac cycle based on pressure measured intravenously during a procedure and to derive a fractional flow reserve from the measured pressure during the identified regions. Further the disclosure provides to derive a trend line of the derived fractional flow reserve while the patient in undergoing a procedure, such as a pre-percutaneous coronary intervention.
Abstract:
A balloon valvuloplasty catheter may include an elongate shaft having a guidewire lumen and a device lumen extending longitudinally therein, an expandable balloon secured to a distal portion of the elongate shaft, and an intravascular ultrasound catheter slidably disposed within the device lumen. The device lumen is in fluid communication with an interior of the expandable balloon. A method of preparing a native aortic heart valve of a patient's heart for transcatheter aortic valve replacement may include using the balloon valvuloplasty to observe via intravascular ultrasound and evaluate a position of the native leaflets relative to the left and right coronary artery ostia to determine if the native leaflets block the left coronary artery ostium and/or the right coronary artery ostium when the expandable balloon is inflated.
Abstract:
The present disclosure provides devices and methods to identify locations of side branches in a series of intravascular images (e.g., a pre-treatment IVUS pullback, a post-treatment IVUS pullback, or the like) to assist with co-registering the IVUS images with an extravascular image (e.g., angiogram, or the like) or with another set of IVUS images. The present disclosure further provides devices and methods for training a machine learning (ML) model to infer side branch locations from IVUS images and an analytic algorithm for extracting frames from the IVUS images representing side branches.
Abstract:
The present disclosure provides devices and methods to process intravascular images of a vessel of one imaging modalities and to generate, extract and adapt features from another imaging modality to generate a hybrid image comprising features from both modalities. The disclosure provides devices and methods to train deep generative models to adapt domain specific features from one intravascular imaging modality (e.g., OCT, or the like) to another intravascular imaging modality (e.g., IVUS) and integrate the adapted features into the images from the other intravascular imaging modality.
Abstract:
The present disclosure provides to process intravascular ultrasound (IVUS) images from different runs through a vessel to generate a mapping between frames of each IVUS run and to generate a graphical user interface (GUI) to graphically present the IVUS runs in relationship to each other. In some examples, a vessel fiducial is identified in a frame of each IVUS run and one or both runs are offset in time, distance, and/or angle to align the frames with the identified vessel fiducial. Further, the disclosure provides to angularly align intravascular images to a viewing perspective of an external image of the vessel.