Abstract:
Embodiments include systems and methods for improving the beamforming efficiency of Multi-User Multiple Input Multiple Output (MU-MIMO) and/or Coordinate Beamforming (CB) in wireless multi-access networks. In one aspect, a receiver-aided approach for MU-MIMO and/or CB is provided. Unlike conventional MU-MIMO/CB operation which is transparent to the UE, the receiver-aided approach herein makes information about potential MU-MIMO and/or CB multi-user interference available to UEs being considered for MU-MIMO and/or CB transmission. As such, the UEs can provide Channel State Information (CSI) that is better tailored to actual data transmission conditions than in conventional operation, and the base station can make better decisions regarding MU-MIMO and/or CB operation, user selection, and transmission parameters (e.g., number of data streams, precoder matrix, etc.).
Abstract:
The present disclosure is directed to a system and method for extending a reference signal pattern to define additional reference signals using a phase division multiplexing (PDM) technique. The reference signal pattern can be a predefined reference signal pattern in a wireless communication standard and can be extended to support massive MIMO communication.
Abstract:
The present disclosure is directed to a system and method for extending a reference signal pattern to define additional reference signals using a phase division multiplexing (PDM) technique. The reference signal pattern can be a predefined reference signal pattern in a wireless communication standard and can be extended to support massive MIMO communication.
Abstract:
Systems and methods for enabling a wireless backhaul network between access points (APs) in a wireless network are provided. In an embodiment, the wireless backhaul network is enabled using a Massive Multiple Input Multiple Output (MIMO) radio access technology (RAT). In another embodiment, the wireless backhaul network is established using the same RAT as used by the APs to serve user devices, and can utilize the same time and frequency resources used for user communication.
Abstract:
A dedicated calibration device may be utilized by a wireless transceiver device, such as a base station, to compute compensation matrices. The wireless transceiver device and the dedicated calibration device can exchange training sequence signals. Based on the exchanged training sequence signals, the wireless transceiver device and the dedicated calibration device can estimate overall baseband to baseband channel responses taking into account the amplitude and phase responses of the respective transmit and receive radio chains, and the wireless transceiver device can determine the compensation matrices. Furthermore, the wireless transceiver device can estimate a baseband-to-baseband uplink channel response relative to actual user equipment, approximate a downlink channel response using only one of the determined compensation matrices, and perform beamforming to the actual user equipment using the approximated downlink channel response.