摘要:
A display substrate includes a first electrode and a first alignment layer disposed on the first electrode. The first alignment layer includes first and second alignment parts. The first electrode has a first opening portion formed therethrough. The first and second alignment parts are disposed at two sides of the first opening portion. The first and second alignment parts have the different alignment directions from each other.
摘要:
Air is sprayed on the first polymer film along a first negative direction in the sub pixel areas of an n-th row of a unit pixel area, and air is sprayed on the first polymer film along a first positive direction in the sub pixel areas of an (n+1)-th row of the unit pixel area to form a first alignment layer. Air is sprayed on the second polymer film along a second negative direction crossing the first negative direction in the sub pixel areas of an n-th column of the unit pixel area, and air is sprayed on the second polymer film along a second positive direction crossing the first positive direction in the sub pixel areas of an (n+1)-th column of the unit pixel area to form a second alignment layer.
摘要:
An apparatus for arranging a spacer includes a substrate, a roller, and an adhesion unit. The substrate includes a recessed portion. A spacer, which maintains a cell gap of a display panel and has an adhesive member formed thereon, is received in the recessed portion. The roller corresponds to the spacer. The roller makes contact with an exposed portion of the adhesive member. The adhesion unit provides for an adhesive strength between the exposed portion of the adhesive member and the roller that exceeds an adhesive strength between the received portion of the adhesive member and the recessed portion of the substrate so that the spacer may be printed on the roller. Therefore, a cell gap uniformity of a display device may be improved.
摘要:
A liquid crystal display according to an exemplary embodiment of the present invention includes a first substrate and a second substrate facing each other and a liquid crystal layer formed between the first substrate and the second substrate and including liquid crystal molecules. The liquid crystal layer includes a first sub-region and a second sub-region having different alignment azimuth angles of the liquid crystal molecules, the liquid crystal molecules of the first sub-region are aligned to have a first azimuth angle and a polar angle of less than 90° near the first substrate and are vertically aligned near the second substrate, and the liquid crystal molecules of the second sub-region are aligned to have a second azimuth angle and a polar angle of less than 90° near the second substrate and are vertically aligned near the first substrate.
摘要:
An apparatus for printing spacers on a substrate of an LCD includes a spacer supply roller having a plurality of recesses formed in its exterior surface. A plurality of uniform volumes of an ink containing the spacers is loaded into the recesses and then transferred from the supply roller onto a transfer belt that is arranged to move tangentially with respect to the supply roller by means of a transfer roller and an auxiliary roller. The LCD substrate is then moved tangentially with respect to the moving transfer belt such that the ink volumes on the transfer belt are transferred onto the substrate at selected locations thereon. The continuously rotating components of the apparatus enable it to accommodate LCD panels of any size without the need for large spacer supply substrates and transfer rollers and prevent the inadvertent deposition of multiple layers of spacers on the substrate.
摘要:
The present invention provides a liquid crystal display (“LCD”) panel and manufacturing method thereof. The LCD panel in accordance with the present invention includes a lower substrate including a thin film transistor and a pixel electrode, an upper substrate including a common electrode facing the lower substrate, a liquid crystal layer formed between the upper and lower substrates, and an alignment layer formed of an inorganic substance containing silicon (Si), oxygen (O), and carbon (C) on the upper and lower substrates. The transmittance of light through the LCD panel is high and is practically independent of the deposition temperature of the SiOC alignment layer over a wide range of deposition temperatures. The deposition of the alignment layer can be performed over a wide range of deposition temperatures while maintaining high levels of light transmission.
摘要:
Provided are a method of fabricating an alignment film of a liquid crystal display device, which is capable of simply patterning the alignment film at an accurate location and an etching apparatus used therein. The method includes forming an alignment film on a substrate having an electrode pad at a position corresponding to a transfer electrode for applying a voltage to a common electrode, and locally etching the alignment film to expose the electrode pad without using a mask pattern.
摘要:
An apparatus for jetting an alignment agent includes a jetting head having a jetting hole, an alignment agent externally provided onto a substrate and a viscosity controlling part controlling a viscosity of the alignment agent stored in the jetting head to facilitate jetting of the alignment agent. The alignment agent is jetted to the substrate through the jetting hole. The apparatus improves the efficiency of jetting the alignment agent.
摘要:
Disclosed is a method for cutting a non-metallic substrate. A designated cutting line formed on the non-metallic substrate is cut using a thermal stress generated by rapidly heating and cooling the designated cutting line. Further, a shape and an arrangement, etc., of an energy source is optimized, thereby maximizing a cutting speed of the non-metallic substrate and also precisely cutting the non-metallic substrate.
摘要:
A wide variety of different alignment polar angles can be created in the alignment layers of a liquid crystal display with just a small number of UV exposure steps by using one or a combination of overlappable UV masks, where the one or more combinations of overlappable UV masks simultaneously define a maximal transmission region, an intermediate transmission region and a nontransmitting (blocking) region. UV rays are irradiated through masks in different irradiation directions while the mask or masks are disposed in different orientations.