摘要:
A method for creating a variable slice thickness for displaying an imaged object is disclosed. The method includes acquiring a plurality of projection images from a plurality of different projection angles within a defined sweep angle, reconstructing a plurality of object images from the plurality of projection images, each object image having a first slice thickness, and applying a function rule to combine images, whole images or portions thereof or attributes thereof, of the plurality of projection images, of the plurality of object images, or of both, thereby providing for the display of the object utilizing a second slice thickness that varies from the first slice thickness.
摘要:
A method for creating a variable slice thickness for displaying an imaged object is disclosed. The method includes acquiring a plurality of projection images from a plurality of different projection angles within a defined sweep angle, reconstructing a plurality of object images from the plurality of projection images, each object image having a first slice thickness, and applying a function rule to combine images, whole images or portions thereof or attributes thereof, of the plurality of projection images, of the plurality of object images, or of both, thereby providing for the display of the object utilizing a second slice thickness that varies from the first slice thickness.
摘要:
A method and apparatus for tomosynthesis image quality control for a tomosynthesis imaging system. The method and apparatus including: positioning a phantom having an edge of predetermined sharpness at a predetermined angle relative to an imaging plane of an x-ray detector; performing tomosynthesis acquisition and generating one or more slice images using one or more three-dimensional reconstruction algorithms; selecting a slice image to be measured from the one or more slice images; identifying a sharpest edge in the slice image to be measured, wherein the sharpest edge in the slice image to be measured includes the in-focus portion of the phantom; inputting the slice image to be measured and coordinates of the sharpest edge in the slice image to be measured into a modulation transfer function (MTF) algorithm; and, using the MTF algorithm, calculating the in-plane resolution and slice thickness of the slice image to be measured.
摘要:
Certain embodiments of the present invention include methods and systems for improved motion and angulation profiles in tomosynthesis. A method includes designating a target with a first and second dimension. An x-ray beam is projected onto at least a portion of the target. The x-ray beam has an origin with a position along the first dimension. The x-ray beam also has a beam axis, a projection area, and an angle ∅ representative of an angular distance between the beam axis and the at least a portion of the target. The method further includes varying the angle ∅ based at least in part on the position of the origin along the first dimension. The angle ∅ is varied to substantially maintain the projection area.
摘要:
The present invention provides a method and system for reducing artifacts in tomosynthesis reconstructed images. The artifacts reduction method comprises back-projecting only a part of the projection image. The method includes acquiring plurality of projection images from different projection angles. It further includes identifying an area of interest of each projection image based on a predefined area and back project the area of interest of each projection image to reconstruct at least one three dimensional image. In an embodiment the area of interest of the projection image is identified based on field of view of the collimator. In another embodiment the invention provides a tomosynthesis system producing a 3-D image with reduced reducing artifacts.
摘要:
The present invention provides a method and apparatus for tomosynthesis image quality control for a tomosynthesis imaging system, the method and apparatus addressing the measurement of in-plane resolution and slice thickness, via the measurement of modulation transfer function (MTF), the method and apparatus including: positioning a phantom having an edge of predetermined sharpness at a predetermined angle relative to an imaging plane of an x-ray detector; performing tomosynthesis acquisition and generating one or more slice images using one or more three-dimensional reconstruction algorithms; selecting a slice image to be measured from the one or more slice images; identifying a sharpest edge in the slice image to be measured, wherein the sharpest edge in the slice image to be measured includes the in-focus portion of the phantom; inputting the slice image to be measured and coordinates of the sharpest edge in the slice image to be measured into an MTF algorithm; and, using the MTF algorithm, calculating the in-plane resolution and slice thickness of the slice image to be measured.
摘要:
A portable detector for use with an imaging system is disclosed. The portable detector automatically sets one or more operational states based on at least a determination as to whether the portable detector is connected to external power. An imaging system is also disclosed that ascertains whether the portable detector is connected via a tether. The imaging system may perform a compatibility check when connected to the portable detector to assess compatibility between the imaging system and the portable detector.
摘要:
A system and method for automatically positioning an image receptor based on the position of a manually positioned diagnostic source assembly in an X-ray imaging device is provided. In a preferred embodiment of the automated tracking system, an operator manually positions a diagnostic source assembly (DSA) over the area of a patient to be imaged. Sensors in the diagnostic source assembly transmit the position of the DSA to a system controller. The system controller then calculates an optimal position of an image receptor based on the position of the DSA. Once the optimal position is calculated, the system controller sends the optimal position to a motor drive, which positions the image receptor in the calculated optimal position. Position sensors in the image receptor then send positional data of the image receptor to the system controller, which verifies that the image receptor is in the calculated optimal position. If the operator wishes to manually adjust the image receptor, they may override the motor drive and do so. The automated tracking system provides for reduced total imaging time and increased cost effectiveness over prior X-ray imaging systems by reducing the number of retakes required to obtain a satisfactory X-ray image. Reducing retakes also results in decreased exposure to radiation by the patient being imaged which is healthier to the patient.
摘要:
A portable detector for use with an imaging system is disclosed. The portable detector automatically sets one or more operational states based on at least a determination as to whether the portable detector is connected to external power. An imaging system is also disclosed that ascertains whether the portable detector is connected via a tether. The imaging system may perform a compatibility check when connected to the portable detector to assess compatibility between the imaging system and the portable detector.
摘要:
An image acquisition method includes determining the starting position, the ending position of a region of interest, and the value of overlap of the region of interest in the two adjacent sub-images, calculating the number of the sub-images required to be captured, the component of field of view at the direction of tube movement and the positions of the tube and the detector corresponding to each sub-image based on the starting position and the ending position of a region of interest and the value of the overlap. The method also includes moving the tube and the detector to each position and capturing the region of interest to obtain sub-images at the positions, and pasting the several sub-images together to form an image of the said region of interest.