摘要:
A method for a decoding device to decode a codeword matrix of a product code includes: generating a first extended parity check matrix for a vertical code; decoding a horizontal codeword of a plurality of rows in the codeword matrix to thus perform a first decoding process; generating a second extended parity check matrix by removing a column corresponding to a row of the first decoding-succeeded horizontal codeword from the first extended parity check matrix; and decoding the first decoding-failed horizontal codeword by using the second extended parity check matrix to thus perform a second decoding process. Therefore, the simple and reliable product code decoding method is provided.
摘要:
A method for a decoding device to decode a codeword matrix of a product code includes: generating a first extended parity check matrix for a vertical code; decoding a horizontal codeword of a plurality of rows in the codeword matrix to thus perform a first decoding process; generating a second extended parity check matrix by removing a column corresponding to a row of the first decoding-succeeded horizontal codeword from the first extended parity check matrix; and decoding the first decoding-failed horizontal codeword by using the second extended parity check matrix to thus perform a second decoding process. Therefore, the simple and reliable product code decoding method is provided.
摘要:
The present invention relates to a source antenna switching scheme for a non-orthogonal protocol; and more particularly, to a source antenna switching scheme for a non-orthogonal protocol, which transmits a signal of a source node to a destination node through a relay node. The present invention provides a source antenna switching scheme for a non-orthogonal decode-and-forward protocol that can acquire a greater diversity than the conventional NDF protocol. In other words, the present invention provides a source antenna switching scheme for a non-orthogonal decode-and-forward protocol that can increase a diversity order by adding a reasonable priced antenna instead of expensive hardware such as an RF chain when there are a plurality of antenna in the RF chain.
摘要:
Disclosed is a method for selecting a source transmit antenna in a cooperative multiple-input and multiple-output (MIMO) communication system including a source node, a relay node and a destination node. The method includes determining a source transmit antenna selection metric such that a source-destination channel, a source-relay channel and a relay-destination channel are related to one another, and selecting a positive integer number of antennas such that the source transmit antenna selection metric is maximized.
摘要:
Disclosed is a method for selecting a source transmit antenna in a cooperative multiple-input and multiple-output (MIMO) communication system including a source node, a relay node and a destination node. The method includes determining a source transmit antenna selection metric such that a source-destination channel, a source-relay channel and a relay-destination channel are related to one another, and selecting a positive integer number of antennas such that the source transmit antenna selection metric is maximized.
摘要:
Provided are an apparatus and method for reducing a PAPR with less computation complexity without distortion using a selected mapping scheme (SLM) in an OFDM system. The method includes: generating a plurality of OFDM signal sequences by performing an inverse fast Fourier transform (IFFT) operation on input symbol sequences, which are probabilistically independent and have identical information; linearly combining the plurality of OFDM signal sequences by using complex numbers; and generating different OFDM signal sequences based on the linear combination. Accordingly, the number of phase sequences can be increased without almost increasing a computation amount of SLM.
摘要:
The present invention relates to a source antenna switching scheme for a non-orthogonal protocol; and more particularly, to a source antenna switching scheme for a non-orthogonal protocol, which transmits a signal of a source node to a destination node through a relay node. The present invention provides a source antenna switching scheme for a non-orthogonal decode-and-forward protocol that can acquire a greater diversity than the conventional NDF protocol. In other words, the present invention provides a source antenna switching scheme for a non-orthogonal decode-and-forward protocol that can increase a diversity order by adding a reasonable priced antenna instead of expensive hardware such as an RF chain when there are a plurality of antenna in the RF chain.
摘要:
Provided are an apparatus and method for reducing a PAPR with less computation complexity without distortion using a selected mapping scheme (SLM) in an OFDM system. The method includes: generating a plurality of OFDM signal sequences by performing an inverse fast Fourier transform (IFFT) operation on input symbol sequences, which are probabilistically independent and have identical information; linearly combining the plurality of OFDM signal sequences by using complex numbers; and generating different OFDM signal sequences based on the linear combination. Accordingly, the number of phase sequences can be increased without almost increasing a computation amount of SLM.
摘要:
A channel decoding device for a receiver which receives symbols coded by inserting at least one specific bit in a data frame at a predetermined position. In the channel decoding device, a symbol inserter receives the symbols, inserts a symbol having a specific value at a predetermined specific bit insert position and outputs the received symbols at other positions. A decoder decodes symbols output from the symbol inserter.
摘要:
Disclosed is a decoding apparatus for LDPC (Low-Density Parity-Check) codes when receiving data encoded with LDPC codes on a channel having consecutive output values, and a method thereof. The decoding method for LDPC codes uses sequential decoding and includes the following steps: (a) the nodes are divided according to a parity-check matrix into check nodes for a parity-check message and variable nodes for a bit message; (b) the check nodes are divided into a predetermined number of subsets; (c) the LDPC codeword of each subset for all the check nodes is sequentially decoded; (d) an output message is generated for verifying validity of the decoding result; and (e) the steps (b), (c), and (d) are iteratively performed by a predetermined number of iterations.