摘要:
The invention concerns a device for analysing the microporosities of a given material including at least two phases, one of which is a fluid phase, including: multiple sensors (100) incorporated in the given material (M), where each of the sensors includes one or more cMUT acoustic and capacitive transducers.
摘要:
A device for analyzing microporosities of a given material including at least two phases, one of which is a fluid phase, the device including: multiple sensors incorporated in the given material, wherein each of the sensors includes one or more cMUT acoustic and capacitive transducers.
摘要:
A cMUT-type capacitive electroacoustic transducer including: at least one membrane configured to oscillate under effect of an electric field and/or an acoustic wave, wherein the membrane is formed from one or more layers of juxtaposed nanotubes or nanowires or nanorods, and an acoustic imaging device or UHF sonar including such transducers.
摘要:
An electrical sampler device has a plurality of samplers for sampling an electrical signal. Each of the samplers is responsive to a corresponding sampling point. The electrical sampler device also has a propagation line coupled to each of the plurality of samplers, for propagating a sampling signal. One or more delay elements are coupled to the propagation line. The delay means elements delay the propagation of the sampling signal between two neighboring samplers.
摘要:
A sampling device for high frequency signal that propagates in a propagation structure. The device comprises a first stage (A1, I1, C1) to sample a first signal at a first time t1 and at least one second stage (A2, I2, C2) in series with the first stage to take a second sample representative of the first sample, starting from the first sample, taken at a second time t2 greater than t1, the life-time of the second sample being longer than the life-time of the first sample.
摘要:
A process and device for controlling a matrix screen displaying gray levels, wherein during the line time T activation signals are delivered to the columns of the screen for a time depending on the gray level i of the image point in question and equal to (T/N).Nil, where O.ltoreq.i.ltoreq.m.ltoreq.N, the Nils forming a strictly increasing sequence of i of first term zero and of last term lower than or equal to N, the Nils being so selected as to obtain a predetermined distribution for the light intensities of the different gray levels.Application to the control of microdot or liquid crystal matrix screens.
摘要:
The invention relates to a single short radiation pulse analyzer comprising radiation detectors that convert this radiation into an electrical signal, and means of measuring this signal by sampling at different times.
摘要:
A process for regulating the brightness of a microdot fluorescent screen and apparatus for performing this process. The screen is of the matrix type and is addressed by a scan of the rows, a pixel being formed at each row-column intersection. For an illuminated pixel, for a selection time T of the corresponding row, a quantity of charges is emitted by the associated microdots. The brightness is regulated during the selection time of each row by controlling the quantity of charges emitted by the microdots of each pixel to be illuminated, the charge quantity being identical for each pixel.
摘要:
A cMUT-type capacitive electroacoustic transducer including: at least one membrane configured to oscillate under effect of an electric field and/or an acoustic wave, wherein the membrane is formed from one or more layers of juxtaposed nanotubes or nanowires or nanorods, and an acoustic imaging device or UHF sonar including such transducers.
摘要:
A sampler adapted for the measurement of ultra-short electrical pulses of a very broad spectrum. The sampler has an electrical pulse propagation structure (i.e., propagation line) made up of a series of line sections. The line sections are linked to one another by switches which can be commanded electrically. Normally, the switches are on or closed. The taking of samples can occur by opening the switches to thereby confine the totality of the charges carried by the pulse to the different sections that make up the propagation line. Once the switches are opened, the charge may be sampled in each section.