摘要:
Pancreatic Neuroendocrine Tumors (PanNETs) are a rare but clinically important form of pancreatic neoplasia. To explore the genetic basis of PanNETs, we determined the exomic sequences of ten non-familial PanNETs and then screened the most commonly mutated genes in 58 additional PanNETs. Remarkably, the most frequently mutated genes specify proteins implicated in chromatin remodeling: 44% of the tumors had somatic inactivating mutations in MEN-1, which encodes menin, a component of a histone methyltransferase complex; and 43% had mutations in genes encoding either of the two subunits of a transcription/chromatin remodeling complex consisting of DAXX (death-domain associated protein) and ATRX (alpha thalassemia/mental retardation syndrome X-linked). Clinically, mutations in the MEN1 and DAXX/ATRX genes were associated with better prognosis. We also found mutations in genes in the mTOR (mammalian target of rapamycin) pathway in 14% of the tumors, a finding that could potentially be used to stratify patients for treatment with mTOR inhibitors.
摘要:
Pancreatic Neuroendocrine Tumors (PanNETs) are a rare but clinically important form of pancreatic neoplasia. To explore the genetic basis of PanNETs, we determined the exomic sequences of ten non-familial PanNETs and then screened the most commonly mutated genes in 58 additional PanNETs. Remarkably, the most frequently mutated genes specify proteins implicated in chromatin remodeling: 44% of the tumors had somatic inactivating mutations in MEN-1, which encodes menin, a component of a histone methyltransferase complex; and 43% had mutations in genes encoding either of the two subunits of a transcription/chromatin remodeling complex consisting of DAXX (death-domain associated protein) and ATRX (alpha thalassemia/mental retardation syndrome X-linked). Clinically, mutations in the MEN1 and DAXX/ATRX genes were associated with better prognosis. We also found mutations in genes in the mTOR (mammalian target of rapamycin) pathway in 14% of the tumors, a finding that could potentially be used to stratify patients for treatment with mTOR inhibitors.
摘要:
We determined the sequence of ATRX and DAXX in 447 cancers from various sites. We found mutations most commonly in pediatric glioblastoma multiformae (GBM) (11.1%), adult GBM (6.5%), oligodendrogliomas (7.7%) and medulloblastomas (1.5%); and showed that Alternative Lengthening of Telomeres (ALT), a telomerase-independent telomere maintenance mechanism found in cancers that have not activated telomerase, perfectly correlated with somatic mutations of either gene. In contrast, neuroblastomas, and adenocarcinomas of the ovary, breast, and pancreas were negative for mutations in ATRX and DAXX. Alterations in ATRX or DAXX define a specific molecular pathway that is closely associated with an alternative telomere maintenance function in human cancers.
摘要:
We determined the sequence of ATRX and DAXX in 447 cancers from various sites. We found mutations most commonly in pediatric glioblastoma multiformae (GBM) (11.1%), adult GBM (6.5%), oligodendrogliomas (7.7%) and medulloblastomas (1.5%); and showed that Alternative Lengthening of Telomeres (ALT), a telomerase-independent telomere maintenance mechanism found in cancers that have not activated telomerase, perfectly correlated with somatic mutations of either gene. In contrast, neuroblastomas, and adenocarcinomas of the ovary, breast, and pancreas were negative for mutations in ATRX and DAXX. Alterations in ATRX or DAXX define a specific molecular pathway that is closely associated with an alternative telomere maintenance function in human cancers.
摘要:
There are currently few therapeutic options for patients with pancreatic cancers and new insights into the pathogenesis of this lethal disease are urgently needed. To this end, we performed a comprehensive analysis of the genes altered in 24 pancreatic tumors. First, we determined the sequences of 23,781 transcripts, representing 20,583 protein-encoding genes, in DNA from these tumors. Second, we searched for homozygous deletions and amplifications using microarrays querying ˜one million single nucleotide polymorphisms in each sample. Third, we analyzed the transcriptomes of the same samples using SAGE and next-generation sequencing-by-synthesis technologies. We found that pancreatic cancers contain an average of 63 genetic alterations, of which 49 are point mutations, 8 are homozygous deletions, and 6 are amplifications. Further analyses revealed a core set of 12 regulatory processes or pathways that were each genetically altered in 70% to 100% of the samples. The data suggest that dysregulation of this core set of pathways is responsible for the major features of pancreatic tumorigenesis.
摘要:
To help reveal the pathogenesis of these lesions, we purified the DNA from Intraductal Papillary Mucinous Neoplasm (IPMN) cyst fluids from 19 patients and searched for mutations in 169 genes commonly altered in human cancers. We identified recurrent mutations at codon 201 of GNAS. We found that GNAS mutations were present in 66% of IPMNs and that either KRAS or GNAS mutations could be identified in 96%. In eight cases, we could investigate invasive adenocarcinomas that developed in association with IPMNs containing GNAS mutations. In seven of these eight cases, the GNAS mutations present in the IPMNs were also found in the invasive lesion. GNAS mutations were not found in other types of cystic neoplasms of the pancreas or in invasive adenocarcinomas not associated with IPMNs. These data suggest that GNAS mutations can inform the diagnosis and management of patients with cystic pancreatic lesions.
摘要:
To help reveal the pathogenesis of these lesions, we purified the DNA from Intraductal Papillary Mucinous Neoplasm (IPMN) cyst fluids from 19 patients and searched for mutations in 169 genes commonly altered in human cancers. We identified recurrent mutations at codon 201 of GNAS. We found that GNAS mutations were present in 66% of IPMNs and that either KRAS or GNAS mutations could be identified in 96%. In eight cases, we could investigate invasive adenocarcinomas that developed in association with IPMNs containing GNAS mutations. In seven of these eight cases, the GNAS mutations present in the IPMNs were also found in the invasive lesion. GNAS mutations were not found in other types of cystic neoplasms of the pancreas or in invasive adenocarcinomas not associated with IPMNs. These data suggest that GNAS mutations can inform the diagnosis and management of patients with cystic pancreatic lesions.
摘要:
The present invention provides a method for detecting mutations in the PALB2 gene in pancreatic cancer patients and in individuals having a family history of pancreatic cancer. Methods are also provided for diagnosing a predisposition to pancreatic cancer, for predicting a patient's response to pancreatic cancer therapies, and for treating pancreatic cancer, based on presence of a PALB2 mutation or abberant PALB2 gene expression in a patient.
摘要:
The present invention provides a method for detecting mutations in the PALB2 gene in pancreatic cancer patients and in individuals having a family history of pancreatic cancer. Methods are also provided for diagnosing a predisposition to pancreatic cancer, for predicting a patient's response to pancreatic cancer therapies, and for treating pancreatic cancer, based on presence of a PALB2 mutation or abberant PALB2 gene expression in a patient.
摘要:
Transcription in mammalian cells can be assessed at a genome-wide level, but it has been difficult to reliably determine whether individual transcripts are derived from the Plus- or Minus-strands of chromosomes. This distinction can be critical for understanding the relationship between known transcripts (sense) and the complementary antisense transcripts that may regulate them. Here we describe a technique that can be used to (i) identify the DNA strand of origin for any particular RNA transcript and (ii) quantify the number of sense and antisense transcripts from expressed genes at a global level. We examined five different human cell types and in each case found evidence for antisense transcripts in 2900 to 6400 human genes. The distribution of antisense transcripts was distinct from that of sense transcripts, was non-random across the genome, and differed among cell types. Antisense transcripts thus appear to be a pervasive feature of human cells, suggesting that they are a fundamental component of gene regulation.