Abstract:
A process for the liquid phase adsorptive separation of phenylalanine from a fermentation broth containing phenylalanine salts, carbohydrates, amino acids and organic acids. The feed is contacted, at a pH of 4.5-6.5, with a hydrophobic polar, porous synthetic adsorbent, such as Amberlite XAD-7, whose functional groups have a dipole moment of 1.6-2.0, to selectively adsorb the phenylalanine onto said adsorbent to the substantial exclusion of the other feed components and recovering phenylalanine by desorbing with water, an alcohol, a ketone or an ester.
Abstract:
A method of enhancing flux of tailings settling pond water from an oil sands process through a membrane separation system and purifying the water comprising is disclosed. The process comprises the following steps: (a) treating the water with an effective amount of one or more water-soluble cationic polymers, amphoteric polymers, zwitterionic polymers, or a combination thereof; (b) passing the treated water through a membrane separation system; and (c) optionally, passing the permeate from step (b) through an additional membrane separation system.
Abstract:
A method of enhancing flux of tailings settling pond water from an oil sands process through a membrane separation system and purifying the water comprising is disclosed. The process comprises the following steps: (a) treating the water with an effective amount of one or more water-soluble cationic polymers, amphoteric polymers, zwitterionic polymers, or a combination thereof; (b) passing the treated water through a membrane separation system; and (c) optionally, passing the permeate from step (b) through an additional membrane separation system.
Abstract:
The discharge of copper from isothiazolone biocides into industrial waste water streams is prevented by contacting the isothiazolone biocide as it is withdrawn from a point of use storage container with an ion exchange resin capable of removing copper from aqueous solutions. When the treated isothiazolone biocide is added to an industrial process water which will produce waste stream, potential copper contamination is virtually eliminated.
Abstract:
Maltose is separated from mixtures with glucose, DP3 and DP4+ polysaccharides by adsorption on low aluminum Y-type zeolites, i.e., having up to about 15 atoms of aluminum per unit cell and desorbing the adsorbate with water.
Abstract:
Selenium compounds present in aqueous liquids containing sulfate and or chloride anions can be effectively removed by passing the liquid through a thiouronium modified anion ion exchange resin.
Abstract:
A method is described for removing ferrometal corrosion products from cooling water systems, which method recycles ferrous/ferric complexing agents and leads to low volume highly concentrated iron wastes for disposal. The method combines, preferably, the use of citric acid or citric acid-tannin complexing agents with erythorbic acid reducing agents to clean corroded surfaces followed by recovery of both complexing and reducing agents for recycle by contacting spent cleaning solution with strong acid cation exchange resins or chelating resins. The resins remove and retain iron species, releasing chelating and reducing agents to resin bed effluents. These are recycled. A concentrated iron waste stream is recovered by regenerating the resin beds with strong acids, preferably HCL, H.sub.2 SO.sub.4, and the like.
Abstract:
A process for the liquid phase adsorptive separation of phenylalanine from a fermentation broth feed containing phenylalanine and salts. The feed is contacted with a Y zeolite adsorbent, exchanged with sodium, potassium or calcium ions, to selectively adsorb the phenylalanine onto said adsorbent to the substantial exclusion of the other feed components and recovering phenylalanine by desorbing with water. Phosphate salts can be recovered in the raffinate in the adsorption process by washing the adsorbent with acetic acid prior to use.
Abstract:
Chlorofluorocarbon solvents, particularly R113, may be purified by removing SO.sub.2 or its equivalent to the level of below about 0.3 ppb by contact with alumina or zeolites.
Abstract:
A method of enhancing flux of tailings settling pond water from an oil sands process through a membrane separation system and purifying the water comprising is disclosed. The process comprises the following steps: (a) treating the water with an effective amount of one or more water-soluble cationic polymers, amphoteric polymers, zwitterionic polymers, or a combination thereof; (b) passing the treated water through a membrane separation system; and (c) optionally, passing the permeate from step (b) through an additional membrane separation system.