摘要:
A method for achieving multiple link quality of service for video and voice calls over Internet links, or over IP links running in private networks, is described. This method applies to both the non-mobile domain (alternate paths exist in one place at the same time) as well as the mobile domain (one path is used at any one place at a given time, but the user device roams from place to place). This method can be implemented as either computer software or other digital logic (ASIC or FPGA). Using this invention, voice and video calls can be moved at will from one path to another, as many times as required during a single conversation, without breaking the RTP voice or video payload stream. The benefit is that embodiments of this invention have a significantly higher probability that a call never breaks under various conditions of quality degrade. This includes the case of link and router failures, which are treated as a special case of quality degrade in the context of voice and video.
摘要:
A method to score human performance, enabling high-reliability execution and continuous real-time optimization of human workflows is disclosed. The process which is operated is instrumented to ensure that relevant human performance indicators can be measured during operation. These indicators are then used to compute human performance scores for individuals, teams and organizations. The human performance scores are then used to summarize and provide insights into the human performance aspects of operating processes and to inform the higher-level human workflow management systems.
摘要:
In a network routing system,a control blade provides for redundancy and failover of virtual routers (VRs) instantiated by objects running on processing engines of the several virtual routing engines (VREs). When the control blade detects a failure of one processing engines, it may identify the virtual private networks (VPNs) and/or VRs operating on the failed processing engine. The control blade identifies a set of command lines corresponding with the identified VPNs and VRs, and replays the set of command lines with an identity of a new processing engine to recreate the identified VPNs and VRs on the new processing engine.
摘要:
Methods and systems for facilitating fault tolerance in a non-hot-standby configuration of a network routing system are provided. According to one embodiment, a failover method is provided. One or more processing engines of a network routing system are configured to function as active processing engines, each of which having one or more software contexts. A control blade is configured to monitor the active processing engines. One or more of the processing engines are identified to function as non-hot-standby processing engines, each of which having no pre-created software contexts corresponding to the software contexts of the active processing engines. The control blade monitors the active processing engines. Responsive to detecting a fault associated with an active processing engine the active processing engine is dynamically replaced with a non-hot-standby processing engine by creating one or more replacement software contexts within the non-hot-standby processing engine corresponding to those of the active processing engine.
摘要:
In a network routing system, a control blade provides for redundancy and failover of virtual routers (VRs) instantiated by objects running on processing engines of the several virtual routing engines (VREs). When the control blade detects a failure of one processing engines, it may identify the virtual private networks (VPNs) and/or VRs operating on the failed processing engine. The control blade identifies a set of command lines corresponding with the identified VPNs and VRs, and replays the set of command lines with an identity of a new processing engine to recreate the identified VPNs and VRs on the new processing engine.
摘要:
Methods and systems for facilitating fault tolerance in a non-hot-standby configuration of a network routing system are provided. According to one embodiment, a failover method is provided. One or more processing engines of a network routing system are configured to function as active processing engines, each of which having one or more software contexts. A control blade is configured to monitor the active processing engines. One or more of the processing engines are identified to function as non-hot-standby processing engines, each of which having no pre-created software contexts corresponding to the software contexts of the active processing engines. The control blade monitors the active processing engines. Responsive to detecting a fault associated with an active processing engine the active processing engine is dynamically replaced with a non-hot-standby processing engine by creating one or more replacement software contexts within the non-hot-standby processing engine corresponding to those of the active processing engine.
摘要:
Methods and systems for facilitating fault tolerance in a non-hot-standby configuration of a network routing system are provided. According to one embodiment, a failover method is provided. A fault manager executing on a control blade of multiple server blades of a network routing system actively monitors an active processing engine of multiple processing engines within the network routing system. Responsive to detecting a fault associated with the active processing engine, the active processing engine is dynamically replaced with a non-hot-standby processing engine of the multiple processing engines by (i) determining one or more software contexts that were associated with the active processing engine prior to detection of the fault, and (ii) creating one or more replacement software contexts within the non-hot-standby processing engine corresponding to the one or more software contexts.
摘要:
Passive replication methods and systems to facilitate fault tolerance in a network routing system are provided. In one embodiment, a fault associated with a processing engine (PE) of a network routing system is detected by monitoring the health of the network routing system PEs. Responsive to detecting a fault (e.g., a link failure, a failure of a virtual router (VR) or a failure of the PE): VRs that were operating on the PE prior to detection of the fault are identified; configuration information (e.g., a set of command lines in a configuration file) associated with the identified VRs is identified; and the identified VRs are dynamically recreated on a new PE based on the configuration information. For example, a command line interface engine may replay the command line set with a new slot ID and a PE ID of the new PE to recreate the VRs on the new PE.
摘要:
Methods and systems for facilitating fault tolerance in a non-hot-standby configuration of a network muting system are provided. According to one embodiment, a failover method is provided. One or more processing engines of a network routing system are configured to function as active processing engines, each of which having one or more software contexts. A control blade is contoured to monitor the active processing engines. One or more of the processing engines are identified to function as non-hot-standby processing engines, each of which having no pre-created software contexts corresponding, to the software contexts of the active processing engines. The control blade monitors the active processing engines. Responsive to detecting a fault associated with an active processing engine the active processing engine is dynamically replaced with a non-hot-standby processing engine by creating one or more replacement software contexts within the non-hot-standby processing engine corresponding to those of the active processing engine.
摘要:
Methods and systems for facilitating fault tolerance in a non-hot-standby configuration of a network routing system are provided. According to one embodiment, a failover method is provided. A fault manager executing on a control blade of multiple server blades of a network routing system actively monitors an active processing engine of multiple processing engines within the network routing system. Responsive to detecting a fault associated with the active processing engine, the active processing engine is dynamically replaced with a non-hot-standby processing engine of the multiple processing engines by (i) determining one or more software contexts that were associated with the active processing engine prior to detection of the fault, and (ii) creating one or more replacement software contexts within the non-hot-standby processing engine corresponding to the one or more software contexts.