Abstract:
A deinterleaver for performing high-speed multi-channel forward error correction using external SDRAM is provided. According to one exemplary aspect, the deinterleaver performs both read and write accesses to the SDRAM that are burst-oriented by hiding active and precharge cycles in order to achieve high data rate operations. The data bus length of the SDRAM is designed to be twice the deinterleaving symbol size thereby allowing bandwidth to be increased. The deinterleaver accesses data in the SDRAM as read blocks and write blocks. Each block includes a predetermined number of data words to be interleaved/deinterleaved. The ACTIVE command for one block is issued when a preceding block is being processed. Data in one read/write block has the same row address within the same bank of the SDRAM.
Abstract:
Systems and methods for performing high-speed multi-channel forward error correction using external DDR SDRAM is provided. According to one exemplary aspect, an interleaver/deinterleaver performs both read and write accesses to the DDR SDRAM that are burst-oriented by hiding active and precharge cycles in order to achieve high data rate operations. The interleaver/deinterleaver accesses data in the DDR SDRAM as read blocks and write blocks. Each block includes two data sequences. Each data sequence further includes a predetermined number of data words to be interleaved/deinterleaved. The PRECHARGE and ACTIVE command for one data sequence is issued when a preceding data sequence is being processed. Data in one read/write data sequence has the same row address within the same bank of the DDR SDRAM.
Abstract:
A device and method for canceling or attenuating harmonics noise without distorting the incoming signal. An exemplary device includes the use of an estimation loop to generate an artificial signal to eliminate or attenuate the influence of harmonics. The estimation loop includes a mixer adapted to produce a mixed signal by processing or combining the incoming signal and the artificial signal. The estimation loop includes an error detector, a low-pass filter, a parameter estimator, and a numerically controlled oscillator. The parameter estimator produces information relating to the phase, frequency, and amplitude of an incoming harmonics spur and will be used by the numerically controlled oscillator to generate the artificial signal. If the mixed signal contains relatively low levels of harmonics residuals, the mixed signal is produced at the output in lieu of the incoming signal.
Abstract:
A decoder includes a transport engine configured to receive programs and extract timing information and timestamps embedded in the programs. An adder is configured to add a set of timing offsets to the sets of timing information to adjust the timing information from a first time basis to a second time basis. Sums of the timing offsets and the timing information are referred to the mapped-timing information. A correction engine is configured to update the timing offsets as timing information is encountered in the programs, and an offset register is configured to: receive the timing offsets, store the timing offsets, and transfer the timing offsets to the adder. The adder is also configured to add the timing offsets to the timestamps to adjust the time basis of the timestamps from the first time basis to the second time basis. A program is decoder configured to receive the adjusted timestamps to decode the programs.
Abstract:
Systems and methods for performing high-speed multi-channel forward error correction using external DDR SDRAM is provided. According to one exemplary aspect, an interleaver/deinterleaver performs both read and write accesses to the DDR SDRAM that are burst-oriented by hiding active and precharge cycles in order to achieve high data rate operations. The interleaver/deinterleaver accesses data in the DDR SDRAM as read blocks and write blocks. Each block includes two data sequences. Each data sequence further includes a predetermined number of data words to be interleaved/deinterleaved. The PRECHARGE and ACTIVE command for one data sequence is issued when a preceding data sequence is being processed. Data in one read/write data sequence has the same row address within the same bank of the DDR SDRAM.
Abstract:
A decoder includes a transport engine configured to receive programs and extract timing information and timestamps embedded in the programs. An adder is configured to add a set of timing offsets to the sets of timing information to adjust the timing information from a first time basis to a second time basis. Sums of the timing offsets and the timing information are referred to the mapped-timing information. A correction engine is configured to update the timing offsets as timing information is encountered in the programs, and an offset register is configured to: receive the timing offsets, store the timing offsets, and transfer the timing offsets to the adder. The adder is also configured to add the timing offsets to the timestamps to adjust the time basis of the timestamps from the first time basis to the second time basis. A program is decoder configured to receive the adjusted timestamps to decode the programs.
Abstract:
A system for providing jitter-free transmissions for demodulated data streams is disclosed. In one embodiment, the system includes a demodulator, a packet processor and a timing generator. The demodulator further includes a timing recovery circuit. Output signals from the timing recovery circuit and demodulated output signals from the demodulator are provided to the timing generator. Using these signals, the timing generator then generates an output timing signal. Demodulated data are provided to the packet processor as input. The demodulated data are then output by the packet processor under the control of the output timing signal from the timing generator.
Abstract:
A system for providing a high-speed implementation for multi-stream forward error correction (FEC) is provided. According to one exemplary aspect, the system is able to provide block-based multi-stream FEC that reduces the power consumption when compared with conventional symbol-based FEC. The system provides a pipeline architecture for multi-stream FEC so that modules in the system are able to respectively process blocks of data from different channels or data streams.
Abstract:
Efficient synchronization techniques that support multiple reference clocks in an EQAM device. Consider a plurality of different modulators in the EQAM device receiving data from a corresponding plurality of different sources having corresponding different timing references (i.e., different source reference clocks). To accommodate this, the modulators all operate using a common system clock, and each modulator is provided with a phase synchronizer. The phase synchronizer synchronizes the modulated symbol phases to the corresponding reference clock.
Abstract:
An MPEG processor is provided. According to one aspect of the processor, multiple MPEG data streams for corresponding channels are individually stored in an off-chip memory. Corresponding data for a channel is then retrieved from the off-chip memory for processing. The retrieved data is then decoded. The decoded results and associated information are stored on the off-chip memory. Some or all of the associated information that can be used for decoding subsequent data is stored in an on-chip memory. When video images need to be displayed, the corresponding data that is needed for that purpose is then retrieved from the off-chip memory and provided to an analog encoder for encoding in a format that is compatible with an analog display device.