Predictive test for melanoma patient benefit from antibody drug blocking ligand activation of the T-cell programmed cell death 1 (PD-1) checkpoint protein and classifier development methods
    3.
    发明申请
    Predictive test for melanoma patient benefit from antibody drug blocking ligand activation of the T-cell programmed cell death 1 (PD-1) checkpoint protein and classifier development methods 有权
    黑素瘤患者的预测试验受益于抗体药物阻断配体激活T细胞程序性细胞死亡1(PD-1)检查点蛋白和分类器开发方法

    公开(公告)号:US20170039345A1

    公开(公告)日:2017-02-09

    申请号:US15207825

    申请日:2016-07-12

    Applicant: Biodesix, Inc.

    Abstract: A method is disclosed of predicting cancer patient response to immune checkpoint inhibitors, e.g., an antibody drug blocking ligand activation of programmed cell death 1 (PD-1) or CTLA4. The method includes obtaining mass spectrometry data from a blood-based sample of the patient, obtaining integrated intensity values in the mass spectrometry data of a multitude of pre-determined mass-spectral features; and operating on the mass spectral data with a programmed computer implementing a classifier. The classifier compares the integrated intensity values with feature values of a training set of class-labeled mass spectral data obtained from a multitude of melanoma patients with a classification algorithm and generates a class label for the sample. A class label “early” or the equivalent predicts the patient is likely to obtain relatively less benefit from the antibody drug and the class label “late” or the equivalent indicates the patient is likely to obtain relatively greater benefit from the antibody drug.

    Abstract translation: 公开了一种预测癌症患者对免疫检查点抑制剂的反应的方法,例如抗体药物阻断配体激活程序性细胞死亡1(PD-1)或CTLA4。 该方法包括从患者的血液样品获得质谱数据,获得众多预定质谱特征的质谱数据中的积分强度值; 并使用实现分类器的编程计算机对质谱数据进行操作。 分类器将积分强度值与通过分类算法从多个黑素瘤患者获得的类别标记质谱数据的训练集的特征值进行比较,并生成样本的类标签。 类别标签“早期”或等同物预测患者可能从抗体药物和类标签“晚期”获得相对较少的益处,或等同物表示患者可能从抗体药物获得相对较大的益处。

Patent Agency Ranking