Abstract:
Devices, systems, and methods for performing ablation therapy on body tissue are disclosed. An example ablation device for treating body tissue includes an ionically conductive balloon and a radio-frequency electrode that delivers RF energy into a distal section of the balloon. The balloon is configured to transmit the RF energy in a direction distally towards a leading end of the ablation device. Multiple ablation electrodes on the device can be used for providing lesions of different size or shape.
Abstract:
Devices, systems, and methods for performing ablation therapy on body tissue are disclosed. An example ablation device for treating body tissue includes an ionically conductive balloon and a radio-frequency electrode that delivers RF energy into a distal section of the balloon. The balloon is configured to transmit the RF energy in a direction distally towards a leading end of the ablation device. Multiple ablation electrodes on the device can be used for providing lesions of different size or shape.
Abstract:
A system for performing mapping and ablation functions includes a catheter sized and shaped for vascular access. The catheter includes an elongate body extending between a proximal end and a distal end and having at least one inner fluid lumen. The catheter further includes a tip section positioned proximate to the distal end of the body. The tip section includes a proximal portion and a distal portion. The distal portion can have a distal end that can be substantially planar. The system also includes one or more electrode structures exposed at the tip section such that the one or more electrode structures disposed proximate the substantially planar distal end of the tip section.
Abstract:
The disclosure pertains to an intravascular catheter for nerve modulation, comprising an elongate member having a proximal end and a distal end, a balloon having a lumen and a balloon wall, the balloon wall comprising RF permeable sections and non-electrically conductive sections, an electrode disposed within the balloon and extending distally to the furthest distal RF permeable section. The RF permeable sections may comprise a plurality of RF permeable windows, each window having a greater circumferential dimension than an axial dimension. The intravascular system is suited for modulation of renal nerves.
Abstract:
A system for performing mapping and ablation functions includes a catheter sized and shaped for vascular access. The catheter includes an elongate body extending between a proximal end and a distal end. A tip section positioned at the distal end of the catheter body and includes a proximal portion and a distal portion. One or more electrode structures are formed on an exterior surface of the tip section. The one or more electrode structures each includes a mapping electrode at the distal portion of the tip section and a contact pad electrically coupled to the mapping electrode.
Abstract:
A system for performing mapping and ablation functions includes a catheter sized and shaped for vascular access. The catheter includes an elongate body extending between a proximal end and a distal end and having at least one inner fluid lumen. The catheter further includes a tip section positioned proximate to the distal end of the body. The tip section includes a proximal portion and a distal portion. The distal portion can have a distal end that can be substantially planar. The system also includes one or more electrode structures exposed at the tip section such that the one or more electrode structures disposed proximate the substantially planar distal end of the tip section
Abstract:
The disclosure pertains to an intravascular catheter for nerve modulation, comprising an elongate member having a proximal end and a distal end, a balloon having a lumen and a balloon wall, the balloon wall comprising RF permeable sections and non-electrically conductive sections, an electrode disposed within the balloon and extending distally to the furthest distal RF permeable section. The RF permeable sections may comprise a plurality of RF permeable windows, each window having a greater circumferential dimension than an axial dimension. The intravascular system is suited for modulation of renal nerves.
Abstract:
A system for performing mapping and ablation functions includes a catheter sized and shaped for vascular access. The catheter includes an elongate body extending between a proximal end and a distal end. A tip section positioned at the distal end of the catheter body and includes a proximal portion and a distal portion. One or more electrode structures are formed on an exterior surface of the tip section. The one or more electrode structures each includes a mapping electrode at the distal portion of the tip section and a contact pad electrically coupled to the mapping electrode.