摘要:
A process for synthesis of a catalyst is provided. The process includes providing a carbon precursor material, oxidizing the carbon precursor material whereby an oxygen functional group is introduced into the carbon precursor material, and adding a nitrogen functional group into the oxidized carbon precursor material.
摘要:
A process for synthesis of a catalyst is provided. The process includes providing a carbon precursor material, oxidizing the carbon precursor material whereby an oxygen functional group is introduced into the carbon precursor material, and adding a nitrogen functional group into the oxidized carbon precursor material.
摘要:
A method of producing a composite carbon catalyst is generally disclosed. The method includes oxidizing a carbon precursor (e.g., carbon black). Optionally, nitrogen functional groups can be added to the oxidized carbon precursor. Then, the oxidized carbon precursor is refluxed with a non-platinum transitional metal precursor in a solution. Finally, the solution is pyrolyzed at a temperature of at least about 500° C.
摘要:
In one embodiment of the present disclosure, a composite electrode for a battery is provided. The composite electrode includes silver vanadium oxide present in an amount from about 75 weight percent to about 99 weight percent and polypyrrole present in an amount from about 1 weight percent to about 25 weight percent.
摘要:
In one embodiment of the present disclosure, a composite electrode for a battery is provided. The composite electrode includes silver vanadium oxide present in an amount from about 75 weight percent to about 99 weight percent and polypyrrole present in an amount from about 1 weight percent to about 25 weight percent.
摘要:
In one embodiment of the present disclosure, a composite electrode for a battery is provided. The composite electrode includes silver vanadium oxide present in an amount from about 75 weight percent to about 99 weight percent and polypyrrole present in an amount from about 1 weight percent to about 25 weight percent.
摘要:
In one embodiment of the present disclosure, a composite electrode for a battery is provided. The composite electrode includes silver vanadium oxide present in an amount from about 75 weight percent to about 99 weight percent and polypyrrole present in an amount from about 1 weight percent to about 25 weight percent.
摘要:
In one embodiment of the present disclosure a method for forming a PEM fuel cell electrode is provided. The method includes applying a hydrophilic wetting agent on an electrode surface. A catalyst layer is deposited on the wetted electrode surface by pulse electrodeposition, at least a portion of the catalyst penetrating the electrode surface. The electrode surface is heat treated.
摘要:
A method based on pulse electrodeposition technique was developed for preparation of membrane electrode assemblies (MEAs). In this approach, platinum is deposited directly on the surface of the carbon electrode. The method ensures most of the platinum to be in close contact with the membrane. Using this method it is possible to increase the Pt/C ratio up to 75 wt % near the surface of the electrode resulting in a 5 μm thick catalyst layer. The MEA prepared by pulse electrodeposition exhibits a current density of 0.33 A/cm2 at 0.8 V with platinum loading of 0.25 mg of Pt/cm2. The results indicate that pulse deposition may be an attractive technique to replace the conventional powder-type MEA preparation methods and help achieve industry goals of reducing catalyst cost and increasing efficiency in polymer electrode membrane fuel cells (PEMFCs).
摘要翻译:开发了基于脉冲电沉积技术的方法来制备膜电极组件(MEA)。 在这种方法中,铂直接沉积在碳电极的表面上。 该方法可确保大部分铂与膜紧密接触。 使用该方法,可以在电极表面附近增加高达75重量%的Pt / C比,导致5μm厚的催化剂层。 通过脉冲电沉积制备的MEA在0.8V下表现出0.33A / cm 2的电流密度,铂负载为0.25mg Pt / cm 2。 结果表明,脉冲沉积可能是取代常规粉末MEA制备方法的有吸引力的技术,有助于实现降低催化剂成本和提高聚合物电极膜燃料电池(PEMFC)的效率的行业目标。