Abstract:
A circuit for power on data line (PoDL) injection includes a power source, a first and a second coupling component, and an interface. The power source provides one or more DC voltage levels. The first coupling component couples the power source to an interface for coupling to a transmission medium. An Ethernet device is coupled through the second coupling component to the interface. The first coupling component is a balanced component, and the Ethernet device is isolated from the power source via a pair of DC blocking capacitors connected between the first coupling component and the second coupling component.
Abstract:
The present disclosure provides an apparatus and method for measuring echo responses of communication links used in in-vehicle networks with high resolution and high dynamic range, allowing for diagnostics of various failures and/or degradations with high precision. Additional information can be provided to indicate signaling quality, insertion loss, and return loss of the communication links used in in-vehicle networks. Together, these measures and information can provide a comprehensive diagnostic capability that improves network reliability and safety of in-vehicle networks.
Abstract:
A primary device implementing the subject system of link establishment for single pair Ethernet may include at least one processor circuit. The at least one processor circuit may be configured to transmit a first synchronization sequence to a secondary device and to subsequently detect a second synchronization sequence, different than the first, transmitted by the secondary device. The synchronization sequences may be pseudo-noise sequences that have strong autocorrelation characteristics. The at least one processor circuit may be configured to wait a predetermined amount of time after completing the detection of the second synchronization sequence, and then may initiate a training stage. The training stage may include exchanging scrambler states of additive scramblers used by the primary and secondary devices. The at least one processor circuit may be configured to enter a data mode upon completion of training. In the data mode, data is forward error correction encoded and then scrambled.
Abstract:
In the subject system for remote monitoring and configuration, management of a remote physical layer device may be performed by receiving, at a local physical layer device, an incoming message of a first communication format from a controller device. The incoming message may include a request intended for the remote physical layer device that is communicatively coupled to the local physical layer device over a transmission line carrying a data channel and a supplemental channel. The incoming message may be parsed into an outgoing message of a second communication format for sending to the remote physical layer device through the supplemental channel. The local physical layer device may receive a response from the remote physical layer device through the supplemental channel. The local physical layer device may convert the response from the second communication format into the first communication format for sending the converted response back to the controller device.
Abstract:
A method for frequency synchronization of a multiport device may include recovering a clock frequency of a master port of a first device that is linked to the multiport device at a slave port of the multiport device. A clock frequency of the slave port may be locked to the recovered-clock frequency of the master port of the first device. Frequency data may be stored in a first frequency register associated with the slave port. The stored frequency data may include a difference between the recovered-clock frequency of the master port of the first device and a local-clock frequency of the multiport device. A clock frequency of one or more master ports of the multiport device may be synchronized with the locked clock frequency of the slave port by coupling the first frequency register to frequency registers associated with one or more master ports.
Abstract:
The present disclosure is directed to apparatuses for preventing significant amounts of common mode noise from a PHY transceiver, such as an Ethernet PHY transceiver, from coupling to an unshielded twisted-pair cable. The apparatuses can provide common mode noise isolation, while limiting any common mode noise to differential mode noise (CM-DM) conversion. Common mode noise is generally ignored by a PHY transceiver that receives a differential data signal because of differential signaling. However, when common mode noise is converted to differential mode noise, then data errors can result. Thus, limiting any CM-DM conversion is important.
Abstract:
Currently, there exists low power Ethernet PHY solutions running at 10 Gbps over twin-ax cables with SFP+ connectors. However, the cost and range of these cables, along with the size of the connectors, do not match the requirements of in-vehicle networks. If the cable is replaced with a single pair of shielded or coaxial cables, a different mechanism is needed to provide bi-directional communication. Time division duplexing (TDD) can be used to emulate full duplex communication over the single pair of cables by taking turns, in time, transmitting data over the pair of cables in each direction.