POWER COUPLING CIRCUITS FOR SINGLE-PAIR ETHERNET WITH AUTOMOTIVE APPLICATIONS
    1.
    发明申请
    POWER COUPLING CIRCUITS FOR SINGLE-PAIR ETHERNET WITH AUTOMOTIVE APPLICATIONS 审中-公开
    具有汽车应用的单对以太网的电力耦合电路

    公开(公告)号:US20160308683A1

    公开(公告)日:2016-10-20

    申请号:US15098251

    申请日:2016-04-13

    CPC classification number: H04L12/10

    Abstract: A circuit for power on data line (PoDL) injection includes a power source, a first and a second coupling component, and an interface. The power source provides one or more DC voltage levels. The first coupling component couples the power source to an interface for coupling to a transmission medium. An Ethernet device is coupled through the second coupling component to the interface. The first coupling component is a balanced component, and the Ethernet device is isolated from the power source via a pair of DC blocking capacitors connected between the first coupling component and the second coupling component.

    Abstract translation: 用于上电数据线(PoDL)注入的电路包括电源,第一和第二耦合部件以及接口。 电源提供一个或多个直流电压电平。 第一耦合部件将电源耦合到用于耦合到传输介质的接口。 以太网设备通过第二耦合部件耦合到接口。 第一耦合部件是平衡部件,并且以太网器件经由连接在第一耦合部件和第二耦合部件之间的一对隔直流电容器与电源隔离。

    LINK ESTABLISHMENT FOR SINGLE PAIR ETHERNET
    3.
    发明申请
    LINK ESTABLISHMENT FOR SINGLE PAIR ETHERNET 有权
    单一以太网链路建立

    公开(公告)号:US20160365967A1

    公开(公告)日:2016-12-15

    申请号:US14795840

    申请日:2015-07-09

    CPC classification number: H04L7/10 H04L7/048 H04L12/413

    Abstract: A primary device implementing the subject system of link establishment for single pair Ethernet may include at least one processor circuit. The at least one processor circuit may be configured to transmit a first synchronization sequence to a secondary device and to subsequently detect a second synchronization sequence, different than the first, transmitted by the secondary device. The synchronization sequences may be pseudo-noise sequences that have strong autocorrelation characteristics. The at least one processor circuit may be configured to wait a predetermined amount of time after completing the detection of the second synchronization sequence, and then may initiate a training stage. The training stage may include exchanging scrambler states of additive scramblers used by the primary and secondary devices. The at least one processor circuit may be configured to enter a data mode upon completion of training. In the data mode, data is forward error correction encoded and then scrambled.

    Abstract translation: 实现单对以太网链路建立的主题系统的主要装置可以包括至少一个处理器电路。 至少一个处理器电路可以被配置为将第一同步序列发送到辅助设备,并且随后检测由辅助设备发送的与第一同步序列不同的第二同步序列。 同步序列可以是具有强自相关特性的伪噪声序列。 至少一个处理器电路可以被配置为在完成第二同步序列的检测之后等待预定量的时间,然后可以启动训练阶段。 训练阶段可以包括交换由主设备和次设备使用的加法器扰频器的扰频器状态。 所述至少一个处理器电路可以被配置为在完成训练时进入数据模式。 在数据模式下,数据进行前向纠错编码,然后加扰。

    REMOTE MONITORING AND CONFIGURATION OF PHYSICAL LAYER DEVICES
    4.
    发明申请
    REMOTE MONITORING AND CONFIGURATION OF PHYSICAL LAYER DEVICES 有权
    远程监控和物理层设备的配置

    公开(公告)号:US20160205224A1

    公开(公告)日:2016-07-14

    申请号:US14624352

    申请日:2015-02-17

    CPC classification number: H04L69/323 H04L12/6418 H04L69/08 H04W84/04

    Abstract: In the subject system for remote monitoring and configuration, management of a remote physical layer device may be performed by receiving, at a local physical layer device, an incoming message of a first communication format from a controller device. The incoming message may include a request intended for the remote physical layer device that is communicatively coupled to the local physical layer device over a transmission line carrying a data channel and a supplemental channel. The incoming message may be parsed into an outgoing message of a second communication format for sending to the remote physical layer device through the supplemental channel. The local physical layer device may receive a response from the remote physical layer device through the supplemental channel. The local physical layer device may convert the response from the second communication format into the first communication format for sending the converted response back to the controller device.

    Abstract translation: 在用于远程监控和配置的主题系统中,远程物理层设备的管理可以通过在本地物理层设备处从控制器设备接收到第一通信格式的输入消息来执行。 传入消息可以包括用于通过承载数据信道和补充信道的传输线路通信地耦合到本地物理层设备的远程物理层设备的请求。 输入消息可以被解析成用于通过补充信道发送到远程物理层设备的第二通信格式的输出消息。 本地物理层设备可以通过补充信道从远程物理层设备接收响应。 本地物理层设备可以将来自第二通信格式的响应转换为用于将转换的响应发送回控制器设备的第一通信格式。

    LOW-COST PORT SYNCHRONIZATION METHOD IN MULTIPORT ETHERNET DEVICES
    5.
    发明申请
    LOW-COST PORT SYNCHRONIZATION METHOD IN MULTIPORT ETHERNET DEVICES 有权
    多通道以太网设备中的低成本端口同步方法

    公开(公告)号:US20140294133A1

    公开(公告)日:2014-10-02

    申请号:US13890154

    申请日:2013-05-08

    CPC classification number: H04L7/0331 H04J3/0658 H04J3/0673

    Abstract: A method for frequency synchronization of a multiport device may include recovering a clock frequency of a master port of a first device that is linked to the multiport device at a slave port of the multiport device. A clock frequency of the slave port may be locked to the recovered-clock frequency of the master port of the first device. Frequency data may be stored in a first frequency register associated with the slave port. The stored frequency data may include a difference between the recovered-clock frequency of the master port of the first device and a local-clock frequency of the multiport device. A clock frequency of one or more master ports of the multiport device may be synchronized with the locked clock frequency of the slave port by coupling the first frequency register to frequency registers associated with one or more master ports.

    Abstract translation: 多端口设备的频率同步的方法可以包括在多端口设备的从端口处恢复链接到多端口设备的第一设备的主端口的时钟频率。 从端口的时钟频率可能被锁定到第一设备的主端口的恢复时钟频率。 频率数据可以存储在与从端口相关联的第一频率寄存器中。 存储的频率数据可以包括第一设备的主端口的恢复时钟频率和多端口设备的本地时钟频率之间的差异。 通过将第一频率寄存器耦合到与一个或多个主端口相关联的频率寄存器,多端口设备的一个或多个主端口的时钟频率可以与从端口的锁定时钟频率同步。

    Magnetic Circuit for High Speed Automotive Ethernet Over UTP Channels

    公开(公告)号:US20170187472A1

    公开(公告)日:2017-06-29

    申请号:US15385094

    申请日:2016-12-20

    CPC classification number: H04B15/005 H04B3/50 H04L69/08 H04L69/323

    Abstract: The present disclosure is directed to apparatuses for preventing significant amounts of common mode noise from a PHY transceiver, such as an Ethernet PHY transceiver, from coupling to an unshielded twisted-pair cable. The apparatuses can provide common mode noise isolation, while limiting any common mode noise to differential mode noise (CM-DM) conversion. Common mode noise is generally ignored by a PHY transceiver that receives a differential data signal because of differential signaling. However, when common mode noise is converted to differential mode noise, then data errors can result. Thus, limiting any CM-DM conversion is important.

Patent Agency Ranking