Abstract:
The present disclosure is directed to a system and method for selecting a sub-group of user terminals (UTs) among a group of UTs served by a sector of a cellular network to schedule independent data streams for transmission to over the same time-frequency interval. In one embodiment, the sub-group of UTs is selected to limit inter-user interference among the sub-group of UTs. In another embodiment, the sub-group of UTs is selected to limit inter-user interference experienced by a UT that is at or near the boundary of the sector that serves the sub-group of UTs.
Abstract:
The present disclosure is directed to a system and method for selecting a sub-group of user terminals (UTs) among a group of UTs served by a sector of a cellular network to schedule independent data streams for transmission to over the same time-frequency interval. In one embodiment, the sub-group of UTs is selected to limit inter-user interference among the sub-group of UTs. In another embodiment, the sub-group of UTs is selected to limit inter-user interference experienced by a UT that is at or near the boundary of the sector that serves the sub-group of UTs.
Abstract:
The present disclosure is directed to a system and method for determining an EIRP constraint for a data stream based on the direction that a beam carrying the data stream is to be radiated by an array of antennas rather than using a fixed EIRP constraint for all such beams. The system and method can use the direction the beam is to be radiated to determine a distance between the array of antennas and the closest point (or location) in which a human being can potentially be impacted by the radiated beam. For larger distances, the EIRP constraint can be adjusted upward, allowing for higher transmit power levels. Conversely, for comparatively smaller distances, the EIRP constraint can be adjusted downward, allowing for lower transmit power levels.