Abstract:
Systems and methods for enabling a wireless backhaul network between access points (APs) in a wireless network are provided. In an embodiment, the wireless backhaul network is enabled using a Massive Multiple Input Multiple Output (MIMO) radio access technology (RAT). In another embodiment, the wireless backhaul network is established using the same RAT as used by the APs to serve user devices, and can utilize the same time and frequency resources used for user communication.
Abstract:
Embodiments provide systems and methods for enabling a wireless multi-access communication system having a first frequency band and a second frequency band. The first frequency band can be used to establish a first channel using a non-Massive Multiple Input Multiple Output (M-MIMO) radio access technology (RAT). The first channel can be used to broadcast downlink/uplink control information (and, optionally, data) between an access point (AP) and a user device. The second frequency band can be used to establish a second channel using a M-MIMO RAT. The second channel can be used to communicate high speed downlink/uplink data between an AP and a user device. The non-M-MIMO RAT and the M-MIMO RAT can be of the same RAT family or of different RAT families.
Abstract:
In a base station having a Massive Multiple Input Multiple Output (M-MIMO) antenna array, the availability of the M-MIMO antenna array is exploited to manage the interference caused by the base station to neighboring cells. In one embodiment, the large number of antenna elements of the M-MIMO antenna array are used to create precise transmit and/or receive spatial nulls at specific User Equipments (UEs) being served by a neighboring cell and/or in select areas of the neighboring cell. Depending on whether the spatial null is partial or full, transmissions by the base station may have reduced or even zero receive power within the neighboring cell.
Abstract:
Systems and methods for configuring base stations in a geographic region to handle specific respective types of data traffics are provided. The configuration of the base stations can be static, semi-static, or dynamic. User devices are associated with base stations based on their data traffic requirements. By configuring each base station for a particular traffic type, each base station can handle its corresponding traffic with lower complexity and using fewer resources.
Abstract:
The present disclosure is directed to a system and method for selecting a sub-group of user terminals (UTs) among a group of UTs served by a sector of a cellular network to schedule independent data streams for transmission to over the same time-frequency interval. In one embodiment, the sub-group of UTs is selected to limit inter-user interference among the sub-group of UTs. In another embodiment, the sub-group of UTs is selected to limit inter-user interference experienced by a UT that is at or near the boundary of the sector that serves the sub-group of UTs.
Abstract:
Systems and methods for channel assignment configuration in a multiple access point (AP) environment are provided. The multiple APs can be homogeneous or heterogeneous and can implement one or more radio access technologies (RATs), including Massive Multiple Input Multiple Output (M-MIMO) RATs. A channel assignment configuration for a user equipment (UE) can identify one or more communication channels to be established to serve the UE by one or more of the APs.
Abstract:
In wireless operating environments, wireless user devices are often within the coverage area of multiple base stations. The base station providing the best uplink for the user device may be different than the base station providing the best downlink for the user device. Systems and techniques for asymmetric uplink and downlink communications for a user device are provided. In embodiments, the user device initially synchronizes with a base station. Both the uplink and downlink are initially served by this base station. A determination is then made whether to handoff the downlink for the user device to another base station. When a determination is indicated, the downlink is handed off to the second base station. Thereafter, periodic measurements are made. The determinations whether to handoff the uplink and downlink for the user device are made independently.
Abstract:
In a base station having a Massive Multiple Input Multiple Output (M-MIMO) antenna array, the availability of the M-MIMO antenna array is exploited to manage the interference caused by the base station to neighboring cells. In one embodiment, the large number of antenna elements of the M-MIMO antenna array are used to create precise transmit and/or receive spatial nulls at specific User Equipments (UEs) being served by a neighboring cell and/or in select areas of the neighboring cell. Depending on whether the spatial null is partial or full, transmissions by the base station may have reduced or even zero receive power within the neighboring cell.
Abstract:
The present disclosure is directed to a system and method for selecting a sub-group of user terminals (UTs) among a group of UTs served by a sector of a cellular network to schedule independent data streams for transmission to over the same time-frequency interval. In one embodiment, the sub-group of UTs is selected to limit inter-user interference among the sub-group of UTs. In another embodiment, the sub-group of UTs is selected to limit inter-user interference experienced by a UT that is at or near the boundary of the sector that serves the sub-group of UTs.
Abstract:
As wireless networks evolve, network providers may utilize legacy LTE devices as well as devices that support massive multi-input, multiple output (M-MIMO). Systems and methods for simultaneously servicing legacy LTE devices and M-MIMO devices are provided. In embodiments, a transmission zone for M-MIMO communications is defined within a legacy, non M-MIMO radio frame. The location of the M-MIMO transmission zone is transmitted to user devices. For example, an identification of the location of the M-MIMO transmission zone is transmitted in a system information message. In a further example, the location of the M-MIMO transmission zone is transmitted in the downlink control information. The location of the M-MIMO transmission zone may be defined dynamically based on a variety of criteria. In addition or alternatively, a set of pre-defined transmission zones may be utilized.