Abstract:
Protocol adaptation layer for wireless communications. Communication devices that include one or more radio modules operable in accordance with multiple communication protocols establish communications using one communication protocol and then switch to another communication protocol. This switching to another communication protocol may be performed based on a variety of factors including effectuating communications of higher throughput, supporting uni-directional communications vs. bi-directional communications, or any other desired factor. In some embodiments, various communication devices include two radio modules that are each implemented to operate in accordance with one particular communication protocol. Alternatively, a multi-protocol capable radio module may support and operate in accordance with more than one communication protocol. Examples of possible communication protocols include those compliant with Bluetooth, IEEE 802.11, and/or 802.15.3c.
Abstract:
Protocol adaptation layer for wireless communications. Communication devices that include one or more radio modules operable in accordance with multiple communication protocols establish communications using one communication protocol and then switch to another communication protocol. This switching to another communication protocol may be performed based on a variety of factors including effectuating communications of higher throughput, supporting uni-directional communications vs. bi-directional communications, or any other desired factor. In some embodiments, various communication devices include two radio modules that are each implemented to operate in accordance with one particular communication protocol. Alternatively, a multi-protocol capable radio module may support and operate in accordance with more than one communication protocol. Examples of possible communication protocols include those compliant with Bluetooth, IEEE 802.11, and/or 802.15.3c.
Abstract:
Aspects of a method and system for optimal beamforming in a wireless network are presented. Aspects of the system may include one or more processors for use in a requesting communication device wherein the one or more processors may be operable to request a transmission time slot allocation. A determination may be made by a coordinating communication device as whether to assign a sector transmission time slot and/or beamforming transmission time slot to the requesting communication device based on the transmission time slot allocation request. The one or more processors may be operable to receive the assigned sector transmission time slot and/or beamforming transmission time slot.
Abstract:
Protocol adaptation layer for wireless communications. Communication devices that include one or more radio modules operable in accordance with multiple communication protocols establish communications using one communication protocol and then switch to another communication protocol. This switching to another communication protocol may be performed based on a variety of factors including effectuating communications of higher throughput, supporting uni-directional communications vs. bi-directional communications, or any other desired factor. In some embodiments, various communication devices include two radio modules that are each implemented to operate in accordance with one particular communication protocol. Alternatively, a multi-protocol capable radio module may support and operate in accordance with more than one communication protocol. Examples of possible communication protocols include those compliant with Bluetooth, IEEE 802.11, and/or 802.15.3c.
Abstract:
Aspects of a method and system for optimal beamforming in a wireless network are presented. Aspects of the system may include one or more processors for use in a requesting communication device wherein the one or more processors may be operable to request a transmission time slot allocation. A determination may be made by a coordinating communication device as whether to assign a sector transmission time slot and/or beamforming transmission time slot to the requesting communication device based on the transmission time slot allocation request. The one or more processors may be operable to receive the assigned sector transmission time slot and/or beamforming transmission time slot.
Abstract:
Provided is dual mode operation by a communicating device in wireless network. The communicating device selects a radio frequency (RF) channel and a physical layer type. The communicating device processes signals received via the selected RF channel based on the selected physical layer type. The communicating device may determine whether a beacon frame has been detected base on the signals that were received via the selected RF channel and processed based on the selected physical layer type. When a frame is not detected, the communicating device may determine a signal energy level for the received signals. The communicating device may establish an association with an existing network based on detection of the beacon frame or the communicating device may transmit an originating beacon frame based on the determined signal energy level.
Abstract:
Protocol adaptation layer for wireless communications. Communication devices that include one or more radio modules operable in accordance with multiple communication protocols establish communications using one communication protocol and then switch to another communication protocol. This switching to another communication protocol may be performed based on a variety of factors including effectuating communications of higher throughput, supporting uni-directional communications vs. bi-directional communications, or any other desired factor. In some embodiments, various communication devices include two radio modules that are each implemented to operate in accordance with one particular communication protocol. Alternatively, a multi-protocol capable radio module may support and operate in accordance with more than one communication protocol. Examples of possible communication protocols include those compliant with Bluetooth, IEEE 802.11, and/or 802.15.3c.
Abstract:
Provided is dual mode operation by a communicating device in wireless network. The communicating device selects a radio frequency (RF) channel and a physical layer type. The communicating device processes signals received via the selected RF channel based on the selected physical layer type. The communicating device may determine whether a beacon frame has been detected base on the signals that were received via the selected RF channel and processed based on the selected physical layer type. When a frame is not detected, the communicating device may determine a signal energy level for the received signals. The communicating device may establish an association with an existing network based on detection of the beacon frame or the communicating device may transmit an originating beacon frame based on the determined signal energy level.
Abstract:
Protocol adaptation layer for wireless communications. Communication devices that include one or more radio modules operable in accordance with multiple communication protocols establish communications using one communication protocol and then switch to another communication protocol. This switching to another communication protocol may be performed based on a variety of factors including effectuating communications of higher throughput, supporting uni-directional communications vs. bi-directional communications, or any other desired factor. In some embodiments, various communication devices include two radio modules that are each implemented to operate in accordance with one particular communication protocol. Alternatively, a multi-protocol capable radio module may support and operate in accordance with more than one communication protocol. Examples of possible communication protocols include those compliant with Bluetooth, IEEE 802.11, and/or 802.15.3c.