摘要:
A wire grid polarizer and a method of manufacturing the wire grid polarizer are provided. The wire grid polarizer includes: a substrate; and a plurality of core-shell nano wires arranged on the substrate and including wire cores and polymer shells enclosing the wire cores to a predetermined thickness.
摘要:
A wire grid polarizer and a method of manufacturing the wire grid polarizer are provided. The wire grid polarizer includes: a substrate; and a plurality of core-shell nano wires arranged on the substrate and including wire cores and polymer shells enclosing the wire cores to a predetermined thickness.
摘要:
A semiconductor device may include first and second auxiliary gate electrodes and a semiconductor layer crossing the first and second auxiliary gate electrodes. A primary gate electrode may be provided on the semiconductor layer so that the semiconductor layer is between the primary gate electrode and the first and second auxiliary gate electrodes. Moreover, the first and second auxiliary gate electrodes may be configured to induce respective first and second field effect type source/drain regions in the semiconductor layer. Related methods are also discussed.
摘要:
According to some embodiments, a semiconductor device includes first and second auxiliary gate electrodes and a semiconductor layer crossing the first and second auxiliary gate electrodes. A primary gate electrode is provided on the semiconductor layer so that the semiconductor layer is between the primary gate electrode and the first and second auxiliary gate electrodes. Moreover, the first and second auxiliary gate electrodes are configured to induce respective first and second field effect type source/drain regions in the semiconductor layer. Related methods are also discussed.
摘要:
According to example embodiments, a separation membrane includes a graphene on at least one surface of a polymer support. The graphene may include a plurality of grains defined by grain boundaries.
摘要:
A method of selectively growing a plurality of semiconductor carbon nanotubes using light irradiation. The method includes disposing a plurality of nanodots, which include a catalyst material, on a substrate; growing a plurality of carbon nanotubes from the plurality of nanodots, and irradiating light onto the nanodot to selectively grow the plurality of semiconductor carbon nanotubes.
摘要:
Disclosed herein is a reduced graphene oxide doped with a dopant, and a thin layer, a transparent electrode, a display device and a solar cell including the reduced graphene oxide. The reduced graphene oxide doped with a dopant includes an organic dopant and/or an inorganic dopant.
摘要:
An organic light emitting device including graphene. The organic light emitting device includes a first electrode that is interposed between a transparent substrate and an organic layer emitting light, and includes graphene having a thickness of about 0.1 nanometer (nm) to about 10 nanometers (nm).
摘要:
A transistor includes at least three terminals comprising a gate electrode, a source electrode and a drain electrode, an insulating layer disposed on a substrate, and a semiconductor layer disposed on the substrate, wherein a current which flows between the source electrode and the drain electrode is controlled by application of a voltage to the gate electrode, where the semiconductor layer includes a graphene layer and at least one of a metal atomic layer and a metal ion layer, and where the metal atomic layer or the metal ion layer is interposed between the graphene layer and the insulating layer.
摘要:
Provided is a method of modifying carbon nanotubes, the method including: preparing a mixed solution in which a radical initiator and a carbon nanotube are dispersed; applying energy to the mixed solution to decompose the radical initiator into a radical; and reacting the decomposed radical with a surface of the carbon nanotube, wherein the radical which has reacted with the carbon nanotube is detached from the carbon nanotube after the reaction with the carbon nanotube. In the method of modifying carbon nanotube, a radical is reacted with a carbon nanotube and then separated from the carbon nanotube to thus modify the surface of the carbon nanotube without chemical bonding. Accordingly, the conductivity of the carbon nanotube can be increased.