Abstract:
In a method of doping impurities, an amorphous layer is formed on a substrate. Impurities are implanted through a top surface of the amorphous layer to form a first doping region at an upper portion of the substrate. The first doping region and the amorphous layer are transformed into a second doping region and a recrystallized layer, respectively, by a laser annealing process. The recrystallized layer is removed.
Abstract:
Provided are a non-volatile memory device which can be extended in a stack structure and thus can be highly integrated, and a method of manufacturing the non-volatile memory device. The non-volatile memory device includes: at least one first electrode, at least one second electrode crossing the at least one first electrode, at least one data storing layer interposed between the at least one first electrode and the second electrode, at a region in which the at least one first electrode crosses the at least one second electrode and at least one metal silicide layer interposed between the at least one first electrode and the at least one second electrode, at the region in which the at least one first electrode crosses the at least one second electrode.
Abstract:
Provided is a non-volatile memory device including at least one horizontal electrode, at least one vertical electrode, at least one data storage layer and at least one reaction prevention layer. The least one vertical electrode crosses the at least one horizontal electrode. The at least one data storage layer is located in regions in which the at least one vertical electrode crosses the at least one horizontal electrode, and stores data by varying its electrical resistance. The at least one reaction prevention layer is located in the regions in which the at least one vertical electrode crosses the at least one horizontal electrode.
Abstract:
A semiconductor device may include first and second auxiliary gate electrodes and a semiconductor layer crossing the first and second auxiliary gate electrodes. A primary gate electrode may be provided on the semiconductor layer so that the semiconductor layer is between the primary gate electrode and the first and second auxiliary gate electrodes. Moreover, the first and second auxiliary gate electrodes may be configured to induce respective first and second field effect type source/drain regions in the semiconductor layer. Related methods are also discussed.
Abstract:
Provided are a non-volatile memory device and an operation method of the same. The non-volatile memory device may include one or more main strings each of which may include first and second substrings which may separately include a plurality of memory cell transistors; and a charge supply line which may be configured to provide charges to or block charges from the first and second substrings of each of the main strings, wherein each of the main strings may include a first ground selection transistor which may be connected to the first substring; a first substring selection transistor which may be connected to the first ground selection transistor; a second ground selection transistor which may be connected to the second substring; and a second substring selection transistor which may be connected to the second ground selection transistor.
Abstract:
Example embodiments relate to a semiconductor device including a fin-type channel region and a method of fabricating the same. The semiconductor device includes a semiconductor substrate, a semiconductor pillar and a contact plug. The semiconductor substrate includes at least one pair of fins used (or functioning) as an active region. The semiconductor pillar may be interposed between portions of the fins to connect the fins. The contact plug may be disposed (or formed) on the semiconductor pillar and electrically connected to top surfaces of the fins.
Abstract:
A nonvolatile memory device having lower bit line contact resistance and a method of fabricating the same is provided. In the nonvolatile memory device, a semiconductor substrate of a first conductivity type may include first and second fins. A common bit line electrode may connect one end of the first fin to one end of the second fin. A plurality of control gate electrodes may cover the first and second fins and expand across the top surface of each of the first and second fins. A first string selection gate electrode may be positioned between the common bit line electrode and the plurality of control gate electrodes. The first string selection gate electrode may cover the first and second fins and expand across the top surface of each of the first and second fins. A second string selection gate electrode may be positioned between the first string selection gate electrode and the plurality of control gate electrodes. The second string selection gate electrode may cover the first and second fins and expand across the top surface of each of the first and second fins. The first fin under the first string selection gate electrode and the second fin under the second string selection gate electrode may have a second conductivity type opposite to the first conductivity type.
Abstract:
Provided are example embodiments of a non-volatile memory device and a method of fabricating the same. The non-volatile memory device may include a control gate electrode arranged on a semiconductor substrate, a gate insulating layer interposed between the semiconductor substrate and the control gate electrode, a storage node layer interposed between the gate insulating layer and the control gate electrode, a blocking insulating layer interposed between the storage node layer and the control gate electrode, first dopant doping regions along a first side of the control gate electrode, and second dopant doping regions along a second side of the control gate electrode. The first dopant doping regions may alternate with the second dopant doping regions. Stated differently, each of the second dopant doping regions may be arranged in a region on the second side of the control gate electrode that is adjacent to one of the first dopant doping regions.
Abstract:
A non-volatile memory device and a method of fabricating the same are provided. In the non-volatile memory device, at least one first semiconductor layer of a first conductivity type may be formed spaced apart from each other on a portion of a substrate. A plurality of first resistance variation storage layers may contact first sidewalls of each of the at least one first semiconductor layer. A plurality of second semiconductor layers of a second conductivity type, opposite to the first conductivity type, may be interposed between the first sidewalls of each of the at least one first semiconductor layer and the plurality of first resistance variation storage layers. A plurality of bit line electrodes may be connected to each of the plurality of first resistance variation storage layers.
Abstract:
A liquid coating apparatus and method for spraying a liquid on a wafer. The liquid coating apparatus may include a nozzle unit spraying the liquid on the wafer and moving relative to the wafer and a laminar flow forming unit forming a forced air flow around the nozzle unit. Though a wake may be formed around the nozzle unit by a movement of the nozzle unit, the laminar forming unit may reduce and/or minimize an influence of the wake.