摘要:
Techniques for multiplexing pilots in a wireless transmission are described. In one aspect, a transmitter station generates multiple pilot sequences for multiple transmit antennas, with each pilot sequence comprising pilot symbols sent in the time domain on a different set of subcarriers. The transmitter station further generates multiple pilot transmissions for the transmit antennas based on the pilot sequences. In another aspect, a transmitter station generates multiple pilot sequences for multiple transmit antennas based on frequency-domain code division multiplexing (FD-CDM) of a Chu sequence defined by a transmitter-specific value. The transmitter station further generates multiple pilot transmissions for the transmit antennas based on the pilot sequences. In yet another aspect, a transmitter station generates multiple pilot transmissions for multiple transmit antennas based on a first multiplexing scheme and generates multiple data transmissions based on a second multiplexing scheme that is different from the first multiplexing scheme.
摘要:
Techniques for multiplexing pilots in a wireless transmission are described. In one aspect, a transmitter station generates multiple pilot sequences for multiple transmit antennas, with each pilot sequence comprising pilot symbols sent in the time domain on a different set of subcarriers. The transmitter station further generates multiple pilot transmissions for the transmit antennas based on the pilot sequences. In another aspect, a transmitter station generates multiple pilot sequences for multiple transmit antennas based on frequency-domain code division multiplexing (FD-CDM) of a Chu sequence defined by a transmitter-specific value. The transmitter station further generates multiple pilot transmissions for the transmit antennas based on the pilot sequences. In yet another aspect, a transmitter station generates multiple pilot transmissions for multiple transmit antennas based on a first multiplexing scheme and generates multiple data transmissions based on a second multiplexing scheme that is different from the first multiplexing scheme.
摘要:
One embodiment includes a method of receiving a transmitted signal. The method comprises receiving a signal transmitted over a channel. The signal comprises a known signal and an information signal. The method further includes determining at least one indicator of channel characteristics based at least in part on the portion of the known signal. The method further includes generating a first value indicative of the information signal based at least in part on the at least one indicator of the channel characteristics. The first value comprises an error signal. The method further comprises removing the error signal from the first estimate of the signal based at least in part on the portion of the known signal. Other embodiments include systems for performing the method and methods of making such systems.
摘要:
Methods and systems are disclosed for channel estimation and frequency tracking in mobile communication systems. Particularly, various ways of using the time domain impulse channel response based on the staggered frequency domain pilot tones are presented that enable rapid frequency error estimation and frequency tracking control. A mathematical model is developed that provides a convenient metric for evaluating tolerable frequency error, as well as modes for switching between CIR-based and SSC-based frequency tracking.
摘要:
One embodiment includes a method of receiving a transmitted signal. The method comprises receiving a signal transmitted over a channel. The signal comprises a known signal and an information signal. The method further includes determining at least one indicator of channel characteristics based at least in part on the portion of the known signal. The method further includes generating a first value indicative of the information signal based at least in part on the at least one indicator of the channel characteristics. The first value comprises an error signal. The method further comprises removing the error signal from the first estimate of the signal based at least in part on the portion of the known signal. Other embodiments include systems for performing the method and methods of making such systems.
摘要:
Methods and systems are disclosed for channel estimation and frequency tracking in mobile communication systems. Particularly, various ways of using the time domain impulse channel response based on the staggered frequency domain pilot tones are presented that enable rapid frequency error estimation and frequency tracking control. A mathematical model is developed that provides a convenient metric for evaluating tolerable frequency error, as well as modes for switching between channel impulse response (CIR)-based and secondary synchronization channel (SSC)-based frequency tracking.
摘要:
Techniques for performing decision feedback equalization are described. A feed-forward filter response and a feedback filter response are derived based on a channel estimate and a reliability parameter and further without constraint on the feedback filter response or with a constraint of no feedback for an on-time sample. The reliability parameter is indicative of the reliability of the feedback used for equalization and may be frequency dependent or frequency invariant. Different feed-forward and feedback filter responses may be derived with different constraints on the feedback filter and different assumptions for the reliability parameter. Equalization is performed with the feed-forward and feedback filter responses. If equalization is performed for multiple iterations then, for each iteration, the reliability parameter may be updated, the feed-forward and feedback filter responses may be derived based on the updated reliability parameter, and equalization may be performed with the filter responses for the iteration.
摘要:
Systems and methodologies are described that facilitate computing discriminator signals for frequency tracking in wireless communications. The discriminator signal can be computed based at least in part on representations of a received signal shifted upward by a portion of a frequency tone and downward by the portion of the frequency tone. The shifted signals can be summed, and a dot product of the summed signals and a channel estimation of the original signal can be computed to remove uncertain frequency response due to fading. The discriminator signal can be computed as the imaginary portion of the dot product. A frequency error offset can be determined from the discriminator signal and applied to a receiver to tune alignment of the receiver with frequencies of received signals.
摘要:
Techniques for performing decision feedback equalization are described. A feed-forward filter response and a feedback filter response are derived based on a channel estimate and a reliability parameter and further without constraint on the feedback filter response or with a constraint of no feedback for an on-time sample. The reliability parameter is indicative of the reliability of the feedback used for equalization and may be frequency dependent or frequency invariant. Different feed-forward and feedback filter responses may be derived with different constraints on the feedback filter and different assumptions for the reliability parameter. Equalization is performed with the feed-forward and feedback filter responses. If equalization is performed for multiple iterations then, for each iteration, the reliability parameter may be updated, the feed-forward and feedback filter responses may be derived based on the updated reliability parameter, and equalization may be performed with the filter responses for the iteration.
摘要:
Systems and methodologies are described that facilitate computing discriminator signals for frequency tracking in wireless communications. The discriminator signal can be computed based at least in part on representations of a received signal shifted upward by a portion of a frequency tone and downward by the portion of the frequency tone. The shifted signals can be summed, and a dot product of the summed signals and a channel estimation of the original signal can be computed to remove uncertain frequency response due to fading. The discriminator signal can be computed as the imaginary portion of the dot product. A frequency error offset can be determined from the discriminator signal and applied to a receiver to tune alignment of the receiver with frequencies of received signals.