摘要:
A liquid crystal display device is provided that includes: first and second substrate; a gate line of a double layer having a first transparent conductive layer and a second opaque conductive layer on the first substrate; a first insulation layer on the gate line; a data line crossing the gate line to define a pixel region, the pixel region having a transmissive region and a reflective region; a thin film transistor connected to the gate and data lines; a pixel electrode formed of the transparent conductive layer in the pixel region; an upper storage electrode forming a storage capacitor by overlapping the gate line with the gate insulating film there between; a transmission hole to exposing the pixel electrode by passing through a second insulation layer on the thin film transistor to the first insulation layer; a reflective electrode connecting the pixel electrode with a drain electrode and the upper storage electrode through an edge part of the transmission hole; a gate pad extending from the first conductive layer of the gate line; a data pad formed of the first conductive layer and connected to the data line through a data link; and a liquid crystal layer between the first and second substrates, wherein the first and second insulation layers are removed in the gate and data pads.
摘要:
A method of fabricating a LCD device includes forming a gate line, a gate electrode, and a pixel electrode having a double-layer structure on a first substrate using a first mask, the double-layer structure including first and second conductive layers; forming a first insulation film, a semiconductor pattern on the first insulation film, a source/drain pattern having an upper storage electrode, source and drain electrodes, a data line using a second mask, the data and gate lines defining a pixel region having transmission and reflection areas; forming a second insulation film on the source/drain pattern and a transmission hole by passing through the second insulation film to the second conductive layer in the transmission area using a third mask; and forming a reflective electrode in the reflection area using a fourth mask, the reflective electrode connecting the pixel electrode with the drain electrode and the storage electrode.
摘要:
A liquid crystal display device is provided that includes: first and second substrate; a gate line of a double layer having a first transparent conductive layer and a second opaque conductive layer on the first substrate; a first insulation layer on the gate line; a data line crossing the gate line to define a pixel region, the pixel region having a transmissive region and a reflective region; a thin film transistor connected to the gate and data lines; a pixel electrode formed of the transparent conductive layer in the pixel region; an upper storage electrode forming a storage capacitor by overlapping the gate line with the gate insulating film there between; a transmission hole to exposing the pixel electrode by passing through a second insulation layer on the thin film transistor to the first insulation layer; a reflective electrode connecting the pixel electrode with a drain electrode and the upper storage electrode through an edge part of the transmission hole; a gate pad extending from the first conductive layer of the gate line; a data pad formed of the first conductive layer and connected to the data line through a data link; and a liquid crystal layer between the first and second substrates, wherein the first and second insulation layers are removed in the gate and data pads.
摘要:
A liquid crystal display device is provided that includes: first and second substrate; a gate line of a double layer having a first transparent conductive layer and a second opaque conductive layer on the first substrate; a first insulation layer on the gate line; a data line crossing the gate line to define a pixel region, the pixel region having a transmissive region and a reflective region; a thin film transistor connected to the gate and data lines; a pixel electrode formed of the transparent conductive layer in the pixel region; an upper storage electrode forming a storage capacitor by overlapping the gate line with the first insulation layer there between; a transmission hole to exposing the pixel electrode by passing through a second insulation layer on the thin film transistor to the first insulation layer; a reflective electrode connecting the pixel electrode with a drain electrode and the upper storage electrode through an edge part of the transmission hole; a gate pad extending from the first conductive layer of the gate line; a data pad formed of the first conductive layer and connected to the data line through a data link; and a liquid crystal layer between the first and second substrates, wherein the first and second insulation layers are removed in the gate and data pads.
摘要:
Provided is a distance measuring module including an imaging lens imaging an object, a light source part emitting reference light to the object through the imaging lens, and a light receiving part receiving reflected light reflected by the object and made incident thereupon through the imaging lens, wherein a distance from the object is measured on the basis of a time of flight of the reflected light having reached the light receiving part.
摘要:
This invention relates to a liquid crystal display panel adapted to prevent corrosion of a pad electrode and reduce a liquid crystal margin area, and a fabricating method thereof. A liquid crystal display panel includes first and second substrates bonded with a sealant; a signal line on the first substrate; a pad formed on a different plane than the signal line; and a contact part overlapping the sealant and connecting the signal line to the pad.
摘要:
An organic light emitting diode display device and a driving method are provided. The organic light emitting diode display device comprises a data driver that generates a plurality of reference data voltages that have a level proportional to a gray scale level of a digital data supplied from the timing controller. The data driver supplies the data voltages to the plurality of data lines and compensates for the data voltages in accordance with a magnitude of the feedback voltages from the plurality of pixels fed back through the plurality of feedback lines under control of the timing controller.
摘要:
Provided are an organic electroluminescence display device and method of fabricating the same. An organic electroluminescence display device according to the present invention includes a first substrate; a plurality of data lines arranged in a first direction on the first substrate; a plurality of gate lines arranged in a second direction on the first substrate; a plurality of pixel regions defined by the gate lines and the data lines, wherein a first pixel line is defined as a line of the pixel regions arranged in the first direction and a second pixel line is defined as a line of the pixel regions arranged in the second direction; a thin film transistor in each pixel region; a plurality of first connecting lines electrically connecting the thin film transistors of the first pixel lines with each other; and a second connecting line electrically connecting the thin film transistor of at least one of the second pixel lines.
摘要:
An organic electro-luminance display device includes a first substrate including a plurality of sub-pixels, a first electrode on the first substrate, a buffer layer on the first electrode of a region that partitions each of the sub-pixels, a spacer on the buffer layer, the buffer layer and the spacer being integrally formed, an organic light-emitting layer on the first electrode that corresponds to each of the sub-pixels and the spacer, and a second electrode on the organic light-emitting layer.
摘要:
A transreflection-type liquid crystal display (LCD) device includes a plurality of gate and data lines on a substrate crossing each other defining a plurality of pixel regions, a plurality of storage lines parallel to the gate lines, each storage line positioned between the gate lines, a plurality of thin film transistors disposed at the crossings of the gate and data lines, each thin film transistor having source and drain electrodes and a U-shaped channel region, a negative-type organic insulating layer within the pixel region except for a transmission part, the negative type organic insulating layer having at least one of concave and convex patterns thereon, a reflective electrode on the negative-type organic insulating layer within the pixel region except for the transmission part, and a transparent electrode within the pixel region in electrical contact with the drain electrode.