Abstract:
Features for rechargeable lithium ion batteries, the batteries optionally employing vertically aligned carbon nanotube scaffolding, are described. Methods of manufacture and a solid polymer electrolyte are described for 3-dimensional battery architectures using the vertically aligned carbon nanotubes. Poly(ethylene)oxide bis(azide) and graphene poly(lactic acid) composite coatings are also described for use in such batteries or others.
Abstract:
This disclosure relates to structures for the conversion of light into energy. More specifically, the disclosure describes devices for conversion of light to electricity using photovoltaic cells comprising graphene.
Abstract:
Features for rechargeable lithium ion batteries, the batteries optionally employing vertically aligned carbon nanotube scaffolding, are described. Methods of manufacture and a solid polymer electrolyte are described for 3-dimensional battery architectures using the vertically aligned carbon nanotubes. Poly(ethylene)oxide bis(azide) and graphene poly(lactic acid) composite coatings are also described for use in such batteries or others.
Abstract:
Efficient methods for producing a superhydrophobic carbon nanotube (CNT) array are set forth. The methods comprise providing a vertically aligned CNT array and performing vacuum pyrolysis on the CNT array to produce a superhydrophobic CNT array. These methods have several advantages over the prior art, such as operational simplicity and efficiency.
Abstract:
The present invention relates to a nano-enhanced device for substance transfer between the device and a tissue. The device comprises a substrate with substantially aligned carbon nanotubes anchored within the substrate, and with at least one end of the carbon nanotubes protruding from the substrate. The protruding nanotube ends may be coated with a drug for delivery of the drug into body tissue. The present invention may be incorporated into an angioplasty catheter balloon or into a patch that is worn on the skin. The carbon nanotubes can be grouped in clusters to effectively form nano-needles which can transfer fluid to or from the subdermal tissue. The nano-needles can be used in conjunction with a sensor to ascertain body fluid information such as pH, glucose level, etc.
Abstract:
Carbon nanotube needles and needle arrays are described in which the precursor pillars are etched by oxygen plasma treatment to provide tapered and/or sharp-tip needles. Processes, products by process, and devices incorporating the sharp-tip needles are further described.
Abstract:
The present invention relates to a nano-enhanced device for substance transfer between the device and a tissue. The device comprises a substrate with substantially aligned carbon nanotubes anchored within the substrate, and with at least one end of the carbon nanotubes protruding from the substrate. The protruding nanotube ends may be coated with a drug for delivery of the drug into body tissue. The present invention may be incorporated into an angioplasty catheter balloon or into a patch that is worn on the skin. The carbon nanotubes can be grouped in clusters to effectively form nano-needles which can transfer fluid to or from the subdermal tissue. The nano-needles can be used in conjunction with a sensor to ascertain body fluid information such as pH, glucose level, etc.
Abstract:
Provided herein are electrochemical systems and related methods of making and using electrochemical systems. Electrochemical systems of the invention implement novel cell geometries and composite carbon nanomaterials based design strategies useful for achieving enhanced electrical power source performance, particularly high specific energies, useful discharge rate capabilities and good cycle life. Electrochemical systems of the invention are versatile and include secondary lithium ion cells, useful for a range of important applications including use in portable electronic devices.
Abstract:
Provided herein are electrochemical systems and related methods of making and using electrochemical systems. Electrochemical systems of the invention implement novel cell geometries and composite carbon nanomaterials based design strategies useful for achieving enhanced electrical power source performance, particularly high specific energies, useful discharge rate capabilities and good cycle life. Electrochemical systems of the invention are versatile and include secondary lithium ion cells, such as silicon-sulfur lithium ion batteries, useful for a range of important applications including use in portable electronic devices. Electrochemical cells of the present invention also exhibit enhanced safety and stability relative to conventional state of the art lithium ion secondary batteries by using prelithiated active materials to eliminate the use of metallic lithium and incorporating carbon nanotube and/or graphene, composite electrode structures to manage residual stress and mechanical strain arising from expansion and contraction of active materials during charge and discharge.
Abstract:
The present invention relates to a nano-enhanced device for substance transfer between the device and a tissue. The device comprises a substrate with substantially aligned carbon nanotubes anchored within the substrate, and with at least one end of the carbon nanotubes protruding from the substrate. The protruding nanotube ends may be coated with a drug for delivery of the drug into body tissue. The present invention may be incorporated into an angioplasty catheter balloon or into a patch that is worn on the skin. The carbon nanotubes can be grouped in clusters to effectively form nano-needles which can transfer fluid to or from the subdermal tissue. The nano-needles can be used in conjunction with a sensor to ascertain body fluid information such as pH, glucose level, etc.