Abstract:
An image forming apparatus includes a developer carrying member that bears and conveys developer. The developer carrying member has at least a base and a surface layer, with the surface layer having an electron donating portion that mainly donates charge to the developer when the developer and the surface layer make frictional contact to exchange charge and an electron accepting portion that mainly accepts charge from the developer when the developer and the surface layer makes frictional contact to exchange charge. A controller applies an AC voltage to the developer carrying member during a period in which an image forming operation is not performed and the developer carrying member is driven, with the AC voltage being different from that applied during an image forming period, and a rotating speed of the developer carrying member during a non-image forming period is slower than that during an image forming period.
Abstract:
The disclosed structure includes a belt-shaped conveying member configured to convey developer. The conveying member includes a partitioning portion, which is a partition for developer contained in a casing with respect to a conveying direction in which the developer is conveyed, wherein, when the developer container is new, a first developer amount which is an amount of the developer contained at an upstream side that is upstream of the partitioning portion in the conveying direction, is larger than a second developer amount which is an amount of the developer contained at a downstream side that is downstream of the partitioning portion in the conveying direction.
Abstract:
A conductive layer of an electrophotographic photosensitive member includes a binder material, a first metal oxide particle, and a second metal oxide particle. The first metal oxide particle is a zinc oxide particle or tin oxide particle coated with tin oxide doped with phosphorus, tungsten, niobium, tantalum, or fluorine. The second metal oxide particle is an uncoated zinc oxide particle or tin oxide particle. The content of the first metal oxide particle is not less than 20% by volume and not more than 50% by volume based on the total volume of the conductive layer. The content of the second metal oxide particle is not less than 0.1% by volume and not more than 15% by volume based on the total volume of the conductive layer, and not less than 0.5% by volume and not more than 30% by volume based on the content of the first metal oxide particle.
Abstract:
A method for producing an electrophotographic photosensitive member in which leakage hardly occurs is provided. For this, in the method for producing an electrophotographic photosensitive member according to the present invention, a coating liquid for a conductive layer is prepared using a solvent, a binder material, and a metallic oxide particle having a water content of not less than 1.0% by mass and not more than 2.0% by mass; using the coating liquid for a conductive layer, a conductive layer having a volume resistivity of not less than 1.0×108 Ω·cm and not more than 5.0×1012 Ω·cm is formed; the mass ratio (P/B) of the metallic oxide particle (P) to the binder material (B) in the coating liquid for a conductive layer is not less than 1.5/1.0 and not more than 3.5/1.0; and the metallic oxide particle is selected from the group consisting of a titanium oxide particle coated with tin oxide doped with phosphorus, a titanium oxide particle coated with tin oxide doped with tungsten, and a titanium oxide particle coated with tin oxide doped with fluorine.
Abstract:
A surface layer of an electrophotographic photosensitive member contains (α) a particular siloxane-modified resin, (β) a particular compound, and a charge transporting substance. (β) is at least one compound selected from the group consisting of hexanol, heptanol, cyclohexanol, benzyl alcohol, ethylene glycol, 1,4-butanediol, 1,5-pentanediol, diethylene glycol, diethylene glycol ethyl methyl ether, ethylene carbonate, propylene carbonate, nitrobenzene, pyrrolidone, N-methylpyrrolidone, methyl benzoate, ethyl benzoate, benzyl acetate, ethyl 3-ethoxypropionate, acetophenone, methyl salicylate, dimethyl phthalate, and sulfolane.
Abstract:
There is provided a process cartridge detachably attachable to a main body of an electrophotographic apparatus, the process cartridge including an electrophotographic photosensitive member and a charging member, wherein an outer surface of the charging member is composed of at least a matrix and at least a part of domains, a volume resistivity of the matrix is 1.0×105 times or more of a volume resistivity of the domain, an average value Sd of circle equivalent diameters of the domains observed on the outer surface of the charging member is in a predetermined range, the electrophotographic photosensitive member contains a support, a photosensitive layer, and a protective layer in this order and when a surface roughness of the protective layer is measured, each of a protruding valley portion Rvk, a load length ratio Mr2, and Sd/Rvk is in a predetermined range.
Abstract:
A developer container includes a container, provided with an opening and configured to accommodate a developer; a sealing member configured to cover the opening; and an unsealing member configured to unseal the opening by moving the sealing member. The sealing member opposes the container at a central opposing portion positioned in a central side and at an end opposing portion positioned at an end side with respect to a longitudinal direction of the unsealing member. The sealing member and the container are bonded to each other at bonding portion which is at least a part of the central opposing portion. The bonding force at the bonding portion of the central opposing portion is larger than a bonding force between the sealing member and the container at the end opposing portion.
Abstract:
A surface layer of an electrophotographic photosensitive member contains (α) a particular siloxane-modified resin, (β) a particular compound, and a charge transporting substance. (β) is at least one compound selected from the group consisting of hexanol, heptanol, cyclohexanol, benzyl alcohol, ethylene glycol, 1,4-butanediol, 1,5-pentanediol, diethylene glycol, diethylene glycol ethyl methyl ether, ethylene carbonate, propylene carbonate, nitrobenzene, pyrrolidone, N-methylpyrrolidone, methyl benzoate, ethyl benzoate, benzyl acetate, ethyl 3-ethoxypropionate, acetophenone, methyl salicylate, dimethyl phthalate, and sulfolane.
Abstract:
A method for producing an electrophotographic photosensitive member in which leakage hardly occurs is provided. For this, in the method for producing an electrophotographic photosensitive member according to the present invention, a coating liquid for a conductive layer is prepared using a solvent, a binder material, and a metallic oxide particle having a water content of not less than 1.0% by mass and not more than 2.0% by mass; using the coating liquid for a conductive layer, a conductive layer having a volume resistivity of not less than 1.0×108 Ω·cm and not more than 5.0×1012 Ω·cm is formed; the mass ratio (P/B) of the metallic oxide particle (P) to the binder material (B) in the coating liquid for a conductive layer is not less than 1.5/1.0 and not more than 3.5/1.0; and the metallic oxide particle is selected from the group consisting of a titanium oxide particle coated with tin oxide doped with phosphorus, a titanium oxide particle coated with tin oxide doped with tungsten, and a titanium oxide particle coated with tin oxide doped with fluorine.
Abstract:
There is provided a process cartridge detachably attachable to a main body of an electrophotographic apparatus, the process cartridge including an electrophotographic photosensitive member and a charging member, wherein an outer surface of the charging member is composed of at least a matrix and at least a part of domains, a volume resistivity of the matrix is 1.0×105 times or more of a volume resistivity of the domain, an average value Sd of circle equivalent diameters of the domains observed on the outer surface of the charging member is in a predetermined range, the electrophotographic photosensitive member contains a support, a photosensitive layer, and a protective layer in this order and when a surface roughness of the protective layer is measured, each of a protruding valley portion Rvk, a load length ratio Mr2, and Sd/Rvk is in a predetermined range.