Abstract:
An oscillator is comprising a plurality of resonators and a voltage bias circuit that applies voltages to the plurality of resonators. Each of the plurality of resonators has a negative resistance element. In the oscillator, the plurality of resonators are connected in parallel to the voltage bias circuit respectively via separate inductors.
Abstract:
A driving method is provided which enables a liquid feeding apparatus using a driving element in a membrane shape to feed a liquid at high liquid feeding accuracy. To this end, a voltage applied to the driving element is controlled in such a way as to repeat a first period in which the voltage is changed from a first voltage to a second voltage and a second period which is a longer period than the first period and in which the voltage is changed from the second voltage to the first voltage, and such that an inflection point is provided to each predetermined interval during the first period based on a Helmholtz vibration period unique to the liquid feeding apparatus.
Abstract:
An image capturing apparatus is provided. The apparatus comprises an image sensor comprising pixels and a controller. The pixels include a photoelectric converter, a holding unit, an output unit and a first and second transfer unit. The controller causes the sensor to repeatedly perform a holding operation that the first transfer unit transfer charge from the photoelectric conversion unit to the holding unit, and a transfer operation that the second transfer unit transfer the charge from the holding unit to the output unit. The controller causes the sensor to perform, as the holding operation, holding operations including a first holding operation for performing the first transfer unit transfer charge generated in a first exposure time and a second holding operation for performing the first transfer unit transfer charge generated in a second exposure time longer than the first exposure time.
Abstract:
Provided is a solid state imaging device including a plurality of pixels, a signal line on which a pixel signal is transmitted, a load transistor having a drain connected to the signal line, a readout circuit that reads out the pixel signal from the signal line, and a control unit that controls a current flowing in the load transistor in accordance with a potential of a control terminal. When a reference potential of the pixel fluctuates relatively to a reference potential of the readout circuit, a potential of the control terminal relative to a potential of a source of the load transistor is changed in a same phase with a fluctuation of the reference potential of the pixel.
Abstract:
To increase image quality of a moving image by suppressing a color afterimage while reducing color noise, provided is an imaging apparatus, including: an imaging device; and a signal processing unit, in which: the imaging device includes a first pixel group and a second pixel group each including a plurality of pixels each configured to output a pixel signal; and the signal processing unit is configured to perform weighted addition for a second pixel signal output from the second pixel group by inter-frame processing, and to change a weight on each frame in the weighted addition based on an inter-frame differential of a first pixel signal.
Abstract:
Resolution data is generated by using signals output by a first pixel group. Color data is generated by using signals output by a second pixel group. The resolution data is combined with the color data to generate first data. Up-conversion processing is performed on the first data to generate second data, and mosaic processing is performed on the second data to generate data of a predetermined array.
Abstract:
A method for driving an image pickup apparatus is a method that generates image data using signals output by R, G, and B pixels contained in n frames, where n is an integer greater than or equal to two, and a signal or signals output by a W pixel contained in m frame or frames, where m is smaller than n, or that generates image data using signals output by R and B pixels contained in n frames and a signal or signals output by a G pixel contained in m frame or frames.
Abstract:
A system includes a first transmission unit configure to emit a first terahertz wave, a second transmission unit disposed at a position different from a position of the first transmission unit and configured to emit a second terahertz wave, a detection unit for detecting at least one of a first reflected terahertz wave that is a part of the first terahertz wave reflected from an object, or a second reflected terahertz wave that is a part of the second terahertz wave reflected from the object, and outputting image data based on the detected terahertz wave, and a first control unit configured to, under a condition set based on the image data, control at least one of an operation of the first transmission unit or an operation of the second transmission unit.
Abstract:
A movable body includes an imaging system which acquires an image formed by a terahertz wave, wherein the image is an image obtained by capturing an inspection object inside the movable body.
Abstract:
An oscillator is comprising a plurality of resonators and a voltage bias circuit that applies voltages to the plurality of resonators. Each of the plurality of resonators has a negative resistance element. In the oscillator, the plurality of resonators are connected in parallel to the voltage bias circuit respectively via separate inductors.