Abstract:
Provided is a solid-state image pickup element including: a plurality of pixels arranged in a pixel well region; a readout circuit arranged in a peripheral well region, having a first input terminal for receiving the pixel signals from the plurality of pixels and a second input terminal for receiving a reference signal; and a reference signal circuit arranged in the peripheral well region, having a first electrode to which a ground voltage is supplied, and being configured to output the reference signal to the second input terminal of the readout circuit, wherein a resistance value R1 of an electrical path from one of a plurality of pixel well contacts to the first electrode and a resistance value R2 of an electrical path from one of a plurality of peripheral well contacts closest to the first electrode to the first electrode satisfy a relationship of R1
Abstract:
In an image pickup device, in a period for which a signal value of the comparison result signal is changed in a certain AD converter among a plurality of AD converters, the signal value of the comparison result signal changes a plurality of times in another AD converter.
Abstract:
A driving method for an image pickup apparatus that includes a plurality of pixels each including a photoelectric conversion portion includes performing photoelectric conversion in each of the plurality of photoelectric conversion portions during a period between first time and second time, generating a plurality of first signals, each being a signal deriving from electric charge generated through the photoelectric conversion in the photoelectric conversion portion, which is a plurality of signals to be generated for each of the plurality of pixels, and generating a plurality of second signals by performing moving average processing on the plurality of first signals.
Abstract:
A driving method for an image pickup apparatus that includes a plurality of pixels each including a photoelectric conversion portion includes performing photoelectric conversion in each of the plurality of photoelectric conversion portions during a period between first time and second time, generating a plurality of first signals, each being a signal deriving from electric charge generated through the photoelectric conversion in the photoelectric conversion portion, which is a plurality of signals to be generated for each of the plurality of pixels, and generating a plurality of second signals by performing moving average processing on the plurality of first signals.
Abstract:
An imaging device includes a plurality of pixels each including a plurality of avalanche photodiodes, a setting unit configured to set the plurality of avalanche photodiodes to an active state or an inactive state separately, and a counter circuit that counts and outputs number of photons determined by the avalanche photodiode(s) set to the active state out of the plurality of avalanche photodiodes, wherein the imaging device is configured to change the number of avalanche photodiodes set to the active state out of the plurality of avalanche photodiodes in accordance with brightness of an object.
Abstract:
An imaging device includes a plurality of pixels each including a plurality of avalanche photodiodes, a setting unit configured to set the plurality of avalanche photodiodes to an active state or an inactive state separately, and a counter circuit that counts and outputs number of photons determined by the avalanche photodiode(s) set to the active state out of the plurality of avalanche photodiodes, wherein the imaging device is configured to change the number of avalanche photodiodes set to the active state out of the plurality of avalanche photodiodes in accordance with brightness of an object.
Abstract:
Provided is a solid state imaging device including a plurality of pixels, a signal line on which a pixel signal is transmitted, a load transistor having a drain connected to the signal line, a readout circuit that reads out the pixel signal from the signal line, and a control unit that controls a current flowing in the load transistor in accordance with a potential of a control terminal. When a reference potential of the pixel fluctuates relatively to a reference potential of the readout circuit, a potential of the control terminal relative to a potential of a source of the load transistor is changed in a same phase with a fluctuation of the reference potential of the pixel.
Abstract:
There are provided an image sensor and an image capturing device that detect the cycle of cyclic noise produced by an external circuit outside the image sensor and set operation timings of the image sensor on the basis of the detected cycle.
Abstract:
A semiconductor apparatus includes a first photodiode arranged in a semiconductor substrate, a second photodiode arranged in the semiconductor substrate, a charge voltage conversion part connected to a cathode of the first photodiode and an anode of the second photodiode and configured to convert a charge amount in accordance with electrons generated in the first photodiode and holes generated in the second photodiode into a voltage, and a signal generation part configured to generate a signal in accordance with the voltage of the charge voltage conversion part.
Abstract:
A semiconductor apparatus includes a first photodiode arranged in a semiconductor substrate, a second photodiode arranged in the semiconductor substrate, a charge voltage conversion part connected to a cathode of the first photodiode and an anode of the second photodiode and configured to convert a charge amount in accordance with electrons generated in the first photodiode and holes generated in the second photodiode into a voltage, and a signal generation part configured to generate a signal in accordance with the voltage of the charge voltage conversion part.