Abstract:
An image reading device includes a platen on which an original is to be placed, an illuminating unit configured to illuminate the original, a linear sensor configured to receive light from the original, an optical unit configured to guide the light from the original to the linear sensor, and an aligning portion configured to determine a position of the original in a long-side direction of the linear sensor. The illuminating unit includes a light-guiding member extending in the long-side direction of the linear sensor, and a light source provided only at one long-side end of the light-guiding member. The aligning portion is provided on a side opposite to the light source in the long-side direction of the light-guiding member.
Abstract:
An image reading device includes a platen on which an original is to be placed, an illuminating unit configured to illuminate the original, a linear sensor configured to receive light from the original, an optical unit configured to guide the light from the original to the linear sensor, and an aligning portion configured to determine a position of the original in a long-side direction of the linear sensor. The illuminating unit includes a light-guiding member extending in the long-side direction of the linear sensor, and a light source provided only at one long-side end of the light-guiding member. The aligning portion is provided on a side opposite the light source in the long-side direction of the light-guiding member.
Abstract:
A method detects the floating amount of an original from an original table based on image information read by an image reading apparatus having the original table on which the original is placed, a line sensor, and a lens array arranged in a direction of arrangement of pixels of the line sensor. The method includes obtaining image information of the original as line image information by performing scanning in the direction of arrangement of pixels of the line sensor, extracting a distinguishing portion from the line image information, detecting a characteristic frequency by frequency analysis of image information of the distinguishing portion, and determining the floating amount of the original from the characteristic frequency.
Abstract:
An image reading method in the present invention includes: obtaining a pickup image by performing image pickup of an object mounted on a mounting surface with an imaging unit; and extracting an image of the object from the pickup image, based on a brightness difference between the image of the object and an image of a shadow of the object in the pickup image.
Abstract:
Provided is an image reading apparatus that can read an image with highly accurate and stable density and color while illuminating the image with a color sequential projector thereof. The image reading apparatus according to the present invention includes: an image pickup unit configured to image an original that is mounted on a mounting surface; a projecting unit configured to project an image on the mounting surface by sequentially switching and emitting light of a plurality of colors; and a control unit configured to control the projecting unit so as to project a first black image, a first color image, and a second black image in this order during the imaging by the image pickup unit.
Abstract:
The image reading apparatus includes a light transmissive member, a first light source causing a first light to enter the light transmissive member from a first side face of side faces thereof, a second light source illuminating a document laid on an upper face of the light transmissive member with a second light, an image sensor photoelectrically converting an optical image, and an imaging optical system forming on image sensor the object image with light exiting from the light transmissive member. The first light source is disposed such that the first light emitted therefrom and entering the light transmissive member from the first side face satisfies a total reflection condition at the upper and lower faces of the light transmissive member.
Abstract:
An image reading optical system, including: an imaging optical system used for imaging a slit area of a document and includes an optical element having different cross section shapes in a main scanning direction and in a sub-scanning direction; an aperture stop; and an optical phase changing filter disposed adjacent to the aperture stop and including a phase lead area and a phase delay area, in which the optical phase changing filter includes a surface shape component that is symmetric only with respect to a predetermined plane including a surface normal at the center of the incident beam and one of the main scanning direction and the sub-scanning direction, and with respect to a surface that includes the surface normal at the center of the incident beam and is perpendicular to the predetermined plane, one side is the phase lead area, and another side is the phase delay area.
Abstract:
An illumination device and an image reading apparatus having improved heat resistance and spectral characteristics are provided. An illumination device used in an image reading apparatus that moves relative to a read area of a document includes: a light source; a light guide including an incident surface on which light from the light source is incident and an exit surface from which light from the light source exits; and a spectroscopic unit that is provided between the light source and the light guide and includes, on a surface of a glass substrate facing the light source, a multi-layer film for reflecting infrared light toward the light source.
Abstract:
A method detects the floating amount of an original from an original table based on image information read by an image reading apparatus having the original table on which the original is placed, a line sensor, and a lens array arranged in a direction of arrangement of pixels of the line sensor. The method includes obtaining image information of the original as line image information by performing scanning in the direction of arrangement of pixels of the line sensor, extracting a distinguishing portion from the line image information, detecting a characteristic frequency by frequency analysis of image information of the distinguishing portion, and determining the floating amount of the original from the characteristic frequency.