Apparatus and method for artifact detection and correction using deep learning

    公开(公告)号:US11100684B2

    公开(公告)日:2021-08-24

    申请号:US16509408

    申请日:2019-07-11

    Abstract: A method and apparatus are provided that use deep learning (DL) networks to reduce noise and artifacts in reconstructed computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) images. DL networks are used in both the sinogram and image domains. In each domain, a detection network is used to (i) determine if particular types of artifacts are exhibited (e.g., beam-hardening artifact, ring, motion, metal, photon-starvation, windmill, zebra, partial-volume, cupping, truncation, streak artifact, and/or shadowing artifacts), (ii) determine whether the detected artifact can be corrected through a changed scan protocol or image-processing techniques, and (iii) determine whether the detected artifacts are fatal, in which case the scan is stopped short of completion. When the artifacts can be corrected, corrective measures are taken through a changed scan protocol or through image processing to reduce the artifacts (e.g., convolutional neural network can be trained to perform the image processing).

    Information processing method, medical image diagnostic apparatus, and information processing system

    公开(公告)号:US12205199B2

    公开(公告)日:2025-01-21

    申请号:US17577689

    申请日:2022-01-18

    Abstract: An information processing method of an embodiment is a processing method of information acquired by imaging performed by a medical image diagnostic apparatus, the information processing method includes the steps of: acquiring noise data by imaging a phantom using a medical imaging apparatus; based on first subject projection data acquired by the imaging performed by a medical image diagnostic modality of a same kind as the medical image diagnostic apparatus and the noise data, acquiring synthesized subject data in which noise based on the noise data is added to the first subject projection data; and acquiring a noise reduction processing model by machine learning using the synthesized subject data and second subject projection data acquired by the imaging performed by the medical image diagnostic modality.

Patent Agency Ranking