Abstract:
A dual fuel system includes a first pressurized fuel reservoir, a first fuel pump fluidly connected to the first pressurized fuel reservoir, a second pressurized fuel reservoir, and a second fuel pump including a pump outlet fluidly connected to the second pressurized fuel reservoir, a pumping chamber, an actuating fluid inlet fluidly connected to at least one of the first fuel pump or the first pressurized fuel reservoir, and at least one pumping element. The first fuel pump may have excess capacity, at least at times, so as to provide a pressurized first fuel for actuating the second fuel pump. The at least one pumping element may include an intensifier or de-intensifier plunger such that a flow rate of a second pressurized fuel from the second fuel pump is different than a flow rate of the first pressurized fuel from the first fuel pump as an actuating fluid for the second fuel pump. Related apparatus and methodology is also disclosed.
Abstract:
An internal combustion engine system is described herein. The system uses a switching rail in combination with a first fuel rail to operate the internal combustion engine of the system. The first fuel rail receives the first fuel for combustion within one or more of the combustion cylinders of the internal combustion engine. The switching rails are configured to receive either the first fuel or a second fuel. A controller is used to operate a switching valve that, depending on the position of the switching valve, routes or directs either the second fuel or the first fuel from their respective fuel tanks. In a switching condition, such as startup, shutdown, or when the second fuel is not available, the controller can use the first fuel as the alternate source of fuel provided through the switching rail.
Abstract:
A fuel injector system includes an injector body having a proximal end and a distal end, the injector body defining a nozzle having an outlet. The injector system includes a spill valve fluidly connected to the outlet and having a spill valve member movable between an open position and a closed position. The injector system includes a control valve including a control valve member movable between an open position and a closed position. The injector system includes a check valve fluidly connected to the outlet, the control valve including a check valve needle movable between an open position and a closed position. The injector system also includes an electrical monitoring circuit configured to output a signal indicative of at least one of the open position or the closed position of the spill valve member.
Abstract:
A dual fuel injector may be used to inject both gas and liquid fuel into a cylinder of a compression ignition engine. An injector body defines a first set of nozzle outlets, a second set of nozzle outlets, a first fuel inlet and a second fuel inlet. A dual solenoid actuator includes a first armature, a first coil, a second armature and a second coil that share a common centerline. The dual solenoid actuator has a non-injection configuration at which the first armature is at an un-energized position and the second armature is at an un-energized position. The dual solenoid actuator has a first fuel injection configuration at which the first fuel inlet is fluidly connected to the first set of nozzle outlets, the first armature is at an energized position and the second armature is at the un-energized position.
Abstract:
A fuel injector includes an injector body defining a liquid fuel passage, a gaseous fuel passage, and a first guide bore; a gaseous fuel check guided within the first guide bore between a retracted position and an advanced position to selectively open and block, respectively, fluid communication between the gaseous fuel passage and a gaseous fuel nozzle outlet; and a sleeve seal seated within the first guide bore, the sleeve seal having an inner surface defining a sleeve seal bore therethrough, and at least a portion of the gaseous fuel check is disposed within the sleeve seal bore; an outer surface of the sleeve seal including a first portion and a second portion, the first portion being disposed closer to a longitudinal axis of the sleeve seal bore along a radial direction than the second portion.
Abstract:
A dual fuel injector utilizes first and second control valves to open and close first and second nozzle outlet sets to inject a first fuel and a second fuel, respectively. The first and second fuels may be natural gas and liquid diesel, respectively. Control over liquid and diesel fuel injection events includes control lines that include F, A and Z orifices.
Abstract:
A dual fuel injector utilizes first and second control valves to open and close first and second nozzle outlet sets to inject a first fuel and a second fuel, respectively. The first and second control valves have concentric lines of action, and include a self alignment feature with respect to a flat seat. The two fuels may differ in at least one of chemical identity, matter phase and pressure.
Abstract:
A fuel injector includes an injector body, and a stack within the injector body, and having a nozzle supply passage therein. The stack includes a solenoid assembly having a solenoid housing piece with a fuel bore formed therein that includes a segment of the nozzle supply passage. The solenoid housing piece includes a solenoid housing material in a base state, and a solenoid housing material in a residual compressive stressed state, with the fuel bore being formed by the solenoid housing material in the residual compressive stressed state. Residual stresses may be imparted by ballizing, nitriding, carburizing, autofrettage, or still another technique.