Abstract:
A work machine includes a frame, a traction system supporting the frame, a power source mounted on the frame, a switched reluctance motor, an inverter configured to control power to the motor from a power source, and a controller. The controller is configured to receive a signal indicating a desired torque and determine if the desired torque is between an upper threshold and a lower threshold. If the desired torque is between the upper threshold and the lower threshold, pulse width modulation is used to produce a PWM adjusted torque command, and the motor is commanded based on the PWM adjusted torque command. The PWM adjusted torque command is configured to cycle between the upper threshold and the lower threshold to produce the desired torque.
Abstract:
A machine is described that includes an electric drive for propelling the machine along a ground surface. The machine includes an electric power supply system configured to deliver operating electrical power to the electric drive. The electric power system includes a first generator and a second generator. The electric power system also includes a first rectifier coupled to the first generator and having a first direct current (DC) output and a second rectifier coupled to the second generator and having a second DC output. Both the first DC output and the second DC output are coupled to the single DC bus, thereby providing an arrangement for the first rectifier and the second rectifier to simultaneously provide power to the single DC bus. The electrical power system also includes a first inverter/controller coupled to the single DC bus and configured to provide a controlled alternating current to a first motor.
Abstract:
A fault detection system for a machine having a plurality of electrical conducting elements insulated from a frame ground of the machine is disclosed. The fault detection system may include a high voltage DC power source, a positive high voltage bus connected to a positive terminal of the high voltage DC power source and providing high voltage electrical power to the plurality of electrical conducting elements, and a negative high voltage bus connected to a negative terminal of the high voltage DC power source and returning high voltage electrical power from the plurality of electrical conducting elements. At least one of the positive and negative high voltage buses may be selectively connected through a plurality of switches to plural zones of the electrical conducting elements, with each of the plural zones being electrically connected in parallel, and selectively connected to the high voltage DC power source by one of the plurality of switches. A low voltage DC power source may be configured to form part of a leakage current detector selectively connected through each of the plurality of switches to each of the plural zones for detecting leakage current between an electrical conducting element and the frame ground.
Abstract:
A machine is described that includes an electric drive for propelling the machine along a ground surface. The machine includes an electric power supply system configured to deliver operating electrical power to the electric drive. The electric power system includes a first generator and a second generator. The electric power system also includes a first rectifier coupled to the first generator and having a first direct current (DC) output and a second rectifier coupled to the second generator and having a second DC output. Both the first DC output and the second DC output are coupled to the single DC bus, thereby providing an arrangement for the first rectifier and the second rectifier to simultaneously provide power to the single DC bus. The electrical power system also includes a first inverter/controller coupled to the single DC bus and configured to provide a controlled alternating current to a first motor.
Abstract:
A control system for a machine includes one or more component controllers for one or more components of the machine. The control system also includes a supervisory controller, connected to the one or more component controllers, and having at least one supervisory processor configured to perform operations comprising receiving supervisory system inputs, including at least one of a machine component status input, a key switch input, a directional input, or an operator presence input, from an operator of the machine, requesting and receiving, from each of the one or more component controllers, a status of the one or more components, and, upon receiving an indication that a status of a component, of the one or more components, is faulted, disabling the faulted component, and disabling any other components, of the one or more components, that require the faulted component for operation.
Abstract:
A work machine includes a frame, a traction system supporting the frame, a power source mounted on the frame, a switched reluctance motor, an inverter configured to control power to the motor from a power source, and a controller. The controller is configured to receive a signal indicating a desired torque and determine if the desired torque is between an upper threshold and a lower threshold. If the desired torque is between the upper threshold and the lower threshold, pulse width modulation is used to produce a PWM adjusted torque command, and the motor is commanded based on the PWM adjusted torque command. The PWM adjusted torque command is configured to cycle between the upper threshold and the lower threshold to produce the desired torque.