Abstract:
A mobile machine can include a traction powertrain configured to operate on electrical power and which includes a traction motor coupled to a transmission. To lubricate the transmission, the mobile machine can include a lubrication system having a lubricant pump coupled with a pump motor. The traction motor and the pump motor are electrically arranged in parallel with each other. A powertrain sensor monitors rotational motion in the traction powertrain and an electronic controller can generate a lubricant supply command directing the lubricant pump to deliver a first lubricant quantity to the transmission.
Abstract:
An electric powertrain includes an electric power source, an electric motor and a multi-speed transmission. The powertrain has an electronic controller. The controller determines a respective rimpull torque limit for the operating gear of the multi-speed transmission and determines whether the rimpull torque demand exceeds the rimpull torque limit. Upon determining that the rimpull torque demand exceeds the rimpull torque limit, the controller acts to either (i) shift the multi-speed transmission to a gear in which the respective rimpull torque limit is at or above the rimpull torque demand or (ii) reduce the electric motor torque command to a level for which the rimpull torque is below the respective rimpull torque limit for the operating gear of the multi-speed transmission.
Abstract:
A system and method involves a machine having a power train including a continuously variable transmission (CVT) associated with a plurality of virtual gear ratios. To shift between the plurality of virtual gear ratios, the machine may include an operator input device that may be movable between a plurality of distinct positions. A first position may be associated with a neutral position in which no shifting of virtual gear ratios occurs. A second position of the operator input device may be associated with a first incremental rate for shifting between the virtual gear ratios. A third position may be associated with a second incremental rate for shifting between the virtual gear ratios which is different than the first incremental rate.
Abstract:
An electric drive system for a machine includes a transmission, and an electric drive motor coupled to a transmission input. The electric drive system also includes a plurality of sensing subsystems, each monitoring a speed of rotation and a direction of rotation of one of the electric drive motor or the transmission input. An electric drive control system in the electric drive system includes an electronic controller structured to receive health data of the sensing subsystems, and determine a drive system control command, according to a sensor data sourcing pattern that is dependent upon the health data. Related methodology and control logic is also disclosed.
Abstract:
A system and method involves a machine having a power train including a continuously variable transmission (CVT) associated with a plurality of virtual gear ratios. To shift between the plurality of virtual gear ratios, the machine may include an operator input device that may be movable between a plurality of distinct positions. A first position may be associated with a neutral position in which no shifting of virtual gear ratios occurs. A second position of the operator input device may be associated with a first incremental rate for shifting between the virtual gear ratios. A third position may be associated with a second incremental rate for shifting between the virtual gear ratios which is different than the first incremental rate.
Abstract:
A system and method for controlling a motor of an electric drivetrain having a multi-speed transmission with at least a first clutch and a second clutch. The system and method includes initiating a transmission shift requiring engagement of the first clutch, applying synchronizing torque commands to the motor based on an engagement parameter of the first clutch until the shift is complete, and applying non-shifting torque commands to the motor after the shift is complete.
Abstract:
An electric powertrain includes an electric power source, an electric motor and a multi-speed transmission. The powertrain has an electronic controller. The controller determines a respective rimpull torque limit for the operating gear of the multi-speed transmission and determines whether the rimpull torque demand exceeds the rimpull torque limit. Upon determining that the rimpull torque demand exceeds the rimpull torque limit, the controller acts to either (i) shift the multi-speed transmission to a gear in which the respective rimpull torque limit is at or above the rimpull torque demand or (ii) reduce the electric motor torque command to a level for which the rimpull torque is below the respective rimpull torque limit for the operating gear of the multi-speed transmission.
Abstract:
Operating an electric drive machine includes neutralizing a transmission in the electric drive machine operating in a first range, determining suitability of the electric drive machine for operating the transmission in a second range, and calculating a target transmission input speed, based on a speed parameter indicative of a transmission output speed, and the determined suitability for operating in a second range. A speed of an electric drive motor is varied based on the target transmission input speed, and a second clutch engaged to operate the transmission in the second range based on the varied speed of the electric drive motor. Related apparatus and control logic is also disclosed.
Abstract:
A transmission system is disclosed for use with an engine. The transmission system may have a plurality of gear sets, an input member configured to be powered by the engine and to drive the plurality of gear sets, an output member driven by the plurality of gear sets, and at least one clutch configured to selectively engage select gears of the plurality of gear sets. The transmission system may also have a controller in communication with the engine. The controller may be configured to generate an estimated temperature of the at least one clutch. The controller may further be configured to selectively derate the engine based on the estimated temperature.