Abstract:
A marine seismic source includes source elements configured to emit waves having different frequencies while the source elements are towed at different predetermined depths, respectively. The predetermined depths are calculated such that water-surface reflections of the waves generated by a source element among the source elements interfere constructively with the waves generated by the source element and propagating toward an explored structure under the seafloor. The waves combine to yield a spike-like signature of the source.
Abstract:
A device, medium and method for deblending seismic data associated with a subsurface of the earth. The method includes a step of receiving seismic data S recorded with one or more seismic receivers, wherein the seismic data S includes shot recordings generated by first and second source arrays that are simultaneously actuated; a step of detecting incoherent energy of the seismic data S using a median filter; a step of replacing incoherent parts of the seismic data with a projection filter to obtain deblended data for one of the two or more source arrays; and a step of generating in a computing device an image of the subsurface based on the deblended data.
Abstract:
Computing device, computer instructions and method for denoising input seismic data d. The method includes receiving the input seismic data d recorded in a first domain by seismic receivers, wherein the input seismic data d includes pure seismic data ss relating to an exploration source and coherent noise data n generated by a man-made device; generating a model m in a second domain to describe the input seismic data d; and processing the model m to obtain an output seismic dataset d′ indicative of seismic data substantially free of the coherent noise data n generated by the man-made device.
Abstract:
Device, medium and method for de-blending seismic data. The method for de-blending seismic data associated with a subsurface of the earth includes receiving initial seismic traces recorded by plural sources; de-blending, in a processor, the initial seismic traces to generate de-blended seismic traces; and generating an image of the subsurface based on the de-blended seismic traces. The initial seismic traces include uncontaminated portions corresponding to time intervals substantially free from cross-talk from other sources, and the uncontaminated portions are used to remove cross-talk noise on other initial seismic traces.
Abstract:
Computing device, computer instructions and method for calculating an image of a subsurface based on least square migration and image de-convolution using a matching operator F. The method includes receiving seismic data d; computing a first image m of the subsurface based on the seismic data d; computing a second image h of the subsurface based on the first image m; applying a transform operation to the first and second images m and h to obtain a first transform of the first image and a second transform of the second image; calculating the matching operator F by matching the first transform of the first image to the second transform of the second image; and generating an updated image mupdated of the subsurface based on the matching operator F and the first transform of the first image.
Abstract:
A device, medium and method for deblending seismic data associated with a subsurface of the earth. The method includes receiving an input dataset generated by first and second sources S1 and S2 that are operating as simultaneous sources; arranging the input dataset based on the firing times of source S1; applying with a computing system an annihilation filter to the arranged input dataset to estimate cross-talk noise; convolving the cross-talk noise estimate with an operator to form a signal estimate using the firing times of S1 and S2; and generating an image of the subsurface based on the signal estimate.
Abstract:
Computing device, computer instructions and method for directional designature of seismic data d with a given source directivity. The method includes obtaining directional operators r; calculating a model u with a modified source directivity based on (1) seismic data d, and (2) an operator that is a combination of the directional operators r and a reverse transform operator L; using the model u to obtain seismic data dfree with modified source directivity; and generating a final image of the subsurface using seismic data dfree.
Abstract:
Data is recorded by sensors while an underground formation is explored, e.g., using a seismic acquisition system that emits and receives waves. A model, which is indicative of primary waves contained in the received data, is derived using a multi-order Green's function. Using the model, an image of the underground formation is generated.
Abstract:
A method for removing ocean bottom and/or geology related contamination. The method includes receiving first measurements corresponding to first seismic sensors mounted on a first source array; receiving second measurements corresponding to second seismic sensors mounted away from the first source array; processing the second measurements to determine a contamination model related to the ocean bottom and geology; removing the contamination model from the first measurements to obtain cleaned data; and calculating a source signature of the first source array based on the cleaned data.
Abstract:
Computing device, computer instructions and method for processing input seismic data d. The method includes a step of receiving the input seismic data d recorded in a first domain by seismic receivers that travel in water, the input seismic data d including up-going and down-going wave-fields; a step of generating a model p in a second domain to describe the input seismic data d; and a step of processing with a processor the model p to obtain an output seismic dataset indicative of the down-going wave-field and substantially free of the up-going wave-field.