Abstract:
Device including a substrate including at least one microelectronic and/or nanoelectronic structure (NEMS) having a sensitive portion and a fluid channel. The fluid channel includes two lateral walls, an upper wall connecting the two lateral walls, a lower wall formed by the substrate, and at least two openings in order to provide a circulation in the fluid channel, with the openings being defined between the two lateral walls, with the structure being located inside the fluid channel. Electrical connection lines extend between the structure and the outside of the fluid channel, with the connection lines being carried out on the substrate and passing under the lateral walls. The device also includes an intermediate layer having a planar face in contact with base faces of said lateral walls. The connection lines are at least partially covered by the intermediate layer at least immediately above base faces of the lateral walls. The lateral walls are made sealingly integral on the substrate by a sealing layer on the intermediate layer.
Abstract:
A device comprising a substrate comprising at least one microelectronic and/or nanoelectronic structure comprising at least one sensitive portion and one fluid channel (2) defined between said substrate and a cap (6), where said fluid channel (2) comprises at least two apertures to provide a flow in said channel, where said microelectronic and/or nanoelectronic structure is located within the fluid channel, where said cap is assembled with the substrate at an assembly interface, where said device comprises electrical connections between said microelectronic and/or nanoelectronic structure and the exterior of the fluid channel (2), where said electrical connections (8) are formed by vias made through the substrate (4) directly below the microelectronic and/or nanoelectronic structure, and in electrical contact with said microelectronic and/or nanoelectronic structure.
Abstract:
A process for making at least one porous area (ZP) of a microelectronic structure in at least one part of an conducting active layer (6), the active layer (6) forming a front face of a stack, the stack comprising a back face (2) of conducting material and an insulating layer (4) interposed between the active layer (6) and the back face (2), said process comprising the steps of:a) making at least one contact pad (14) between the back face (2) and the active layer (6) through the insulation layer (2),b) placing the stack into an electrochemical bath,c) applying an electrical current between the back face (2) and the active layer (6) through the contact pad (14) causing porosification of an area (ZP) of the active layer (6) in the vicinity of the contact pad (14),d) forming the microelectronic structure.
Abstract:
Process for fabrication of a micromechanical and/or nanomechanical structure comprising the following steps, starting from an element comprising a support substrate and a sacrificial layer: a) formation of a first layer, at least part of which is porous, b) formation on the first layer of a layer made of one (or several) materials providing the mechanical properties of the structure, called the intermediate layer, c) formation on the intermediate layer of a second layer, at least part of which is porous, d) formation of said structure in the stack composed of the first layer, the intermediate layer and the second layer, e) release of said structure by at least partial removal of the sacrificial layer.