Abstract:
A method for determining a self-assembly pattern of a block copolymer confined inside a closed outline called the guiding outline, comprises the following steps, which are implemented by computer: a) choosing in a database a closed outline called the reference outline that is similar to the guiding outline, a self-assembly pattern of the block copolymer, called the reference pattern, being associated with the reference outline; b) applying a geometric transformation to a plurality of points of said reference pattern in order to convert them to respective points called image points of the self-assembly pattern to be determined. A computer program product for implementing such a method is provided.
Abstract:
Method for simulating shot-noise effects in a particle-beam lithography process, and especially an e-beam lithography process, the process including depositing particles on the surface of a sample in a preset pattern by a beam of the particles, the pattern being subdivided into pixels and a nominal dose of particles being associated with each of the pixels, wherein the process includes the calculation of a map σd of standard deviation in the normalized dose actually deposited in each of the pixels, the map of standard deviation being calculated from a map M0 of the nominal dose associated with each pixel and a point spread function PSF characterizing the process; the method being implemented by computer. Computer program product for implementing and computer programmed to implement such a method. Particle-beam lithography process, and especially an e-beam lithography process, having a prior operation of simulating shot-noise effects using such a method.
Abstract:
A substrate is successively provided with a support (7), an electrically insulating layer (8), and a semi-conductor material layer (2). A first protective mask (1) completely covers a second area (B) of the semi-conductor material layer and leaves a first area (A) of the semi-conductor material layer uncovered. A second etching mask (3) partially covers the first area (A) and at least partially covers the second area (B), so as to define and separate a first area and a second area. Lateral spacers are formed on the lateral surfaces of the second etching mask (3) so as to form a third etching mask. The semi-conductor material layer (2) is etched by means of the third etching mask so as to form a pattern made from semi-conductor material in the first area (A), the first etching mask (3) protecting the second area (B).