Abstract:
An electronic apparatus includes a substrate including a first major surface, a second major surface, and an edge surface. The edge surface includes a radius of curvature extending between the first major surface and the second major surface. The electronic apparatus includes an opto-electronic device positioned on the first major surface. The electronic apparatus includes an electrical component positioned on the second major surface. The electronic apparatus includes a first electrically-conductive trace attached to the edge surface. The first electrically-conductive trace electrically connects a first portion of the opto-electronic device to the electrical component and defines a first current path. The electronic apparatus includes a second electrically-conductive trace extending through an opening in the substrate. The second electrically-conductive trace electrically connects a second portion of the opto-electronic device to the electrical component and defines a second current path different than the first current path.
Abstract:
Processes of chamfering and/or beveling an edge of a glass substrate of arbitrary shape using lasers are described herein. Two general methods to produce chamfers on glass substrates are the first method involves cutting the edge with the desired chamfer shape utilizing an ultra-short pulse laser to create perforations within the glass; followed by an ion exchange.
Abstract:
The present invention relates to a laser cutting technology for cutting and separating thin substrates of transparent materials, for example to cutting of display glass compositions mainly used for production of Thin Film Transistors (TFT) devices. The described laser process can be used to make straight cuts, for example at a speed of >0.25 m/sec, to cut sharp radii outer corners (
Abstract:
The present invention relates to a laser cutting technology for cutting and separating thin substrates of transparent materials, for example to cutting of display glass compositions mainly used for production of Thin Film Transistors (TFT) devices. The described laser process can be used to make straight cuts, for example at a speed of >0.25 m/sec, to cut sharp radii outer corners (
Abstract:
Disclosed herein are glass articles coated on at least one surface with an electrochromic layer and comprising minimal regions of laser damage, and methods for laser processing such glass articles. Insulated glass units comprising such coated glass articles are also disclosed herein.
Abstract:
Processes of chamfering and/or beveling an edge of a glass substrate of arbitrary shape using lasers are described herein. Two general methods to produce chamfers on glass substrates are the first method involves cutting the edge with the desired chamfer shape utilizing an ultra-short pulse laser to create perforations within the glass; followed by an ion exchange.
Abstract:
A substrate with coated edge surfaces, an apparatus for performing the coating, and a method therefor are described. The substrate may include edge surface electrical connectors, wherein the edge coating is coated overtop the edge surface electrical connectors. The apparatus for performing the coating operation includes a rotary fixture configured to facilitate coating of all edge surfaces of a stack of substrate prior to curing of the edge surface coating, wherein according to the method, edge surfaces of one group of corresponding edge surfaces in the stack are coated with a coating material, the rotary fixture is then rotated to position a second group of edge surfaces for coating, and so forth. The coating process is controlled to obtain a consistent overflow onto major surfaces of the stacked substrates.
Abstract:
Disclosed herein are glass articles coated on at least one surface with an electrochromic layer and comprising minimal regions of laser damage, and methods for laser processing such glass articles. Insulated glass units comprising such coated glass articles are also disclosed herein.