Abstract:
Glass articles with protective films used for processing hard disk drive substrates and methods of forming glass articles with protective films used for processing hard disk drive substrates are provided herein. In one embodiment, a glass blank includes: a first surface, a second surface opposing the first surface, and an edge surface connecting the first surface and the second surface; wherein the first surface comprises a first coated portion and a first uncoated portion surrounding the first coated portion, wherein the first uncoated portion extends a first distance radially inward from the edge toward a center of the first surface, wherein the second surface comprises a second coated portion and a second uncoated portion surrounding the second coated portion, wherein the second uncoated portion extends a second distance radially inward from the edge toward a center of the second surface.
Abstract:
Processes and devices by which a brittle material substrate may be edge formed and finished to simultaneously remove corresponding damage remaining on the edges in the areas formed by cutting and separation while imposing a desired edge profile and achieving a desired mechanical edge strength. Processes of the present disclosure may include a chemical and mechanical brush polishing process configured to shape and/or polish a surface of one or more thin substrates. A plurality of substrates may be arranged in a stacked configuration, and engineered interposer devices may be arranged between the stacked substrates. The interposers may provide between the substrates and may direct filament placement during brushing so as to guide material removal on the substrate edges. Substrate edge profile shapes, including symmetric and asymmetric profiles, may be formed by strategic manipulation of interposer properties including dimensions, mechanical features, material properties, and positioning.
Abstract:
Processes of chamfering and/or beveling an edge of a glass substrate of arbitrary shape using lasers are described herein. Two general methods to produce chamfers on glass substrates are the first method involves cutting the edge with the desired chamfer shape utilizing an ultra-short pulse laser that is followed by mechanical polishing with a compliant polishing wheel.
Abstract:
A method of manufacturing a sheet of fused silica includes polishing a sheet of fused silica having a thickness of less than 500 μm and a major face surface area of at least 6π square inches. The polishing is performed by removing less than 100 micrometers depth of material of a major surface of the sheet, such as by bonding the sheet to a substrate, polishing a first major side of the sheet, debonding the sheet from the substrate, flipping the sheet, bonding the flipped sheet to the substrate or a new substrate, and polishing a second major side of the sheet. Prior to polishing, the sheet has a peak-to-valley waviness of at least 1 micrometer, but after polishing has peak-to-valley waviness less than 500 nanometers.
Abstract:
A method of forming a carbon-based electrode includes forming a mixture of activated carbon particles, carbon black particles, binder, and an optional liquid, fibrillating the binder to form a fibrillated mixture, and forming a carbon mat from the fibrillated mixture, wherein the mixture, during the forming of the mixture, is maintained at a temperature less than 19° C. The low temperature process facilitates dispersive and distributive mixing of the components of the carbon mat.
Abstract:
Embodiments of a grinding wheel and methods for edge finishing glass substrates are disclosed. In one or more embodiments, the grinding wheel includes a metal matrix structure, a plurality of primary abrasive particles and a plurality of secondary abrasive particles bonded to the matrix structure, wherein one of the primary abrasive diamond particles and secondary abrasive particles comprises resin bond diamond particles. In some embodiments, the other of the primary abrasive diamond particles and secondary abrasive particles comprises metal bond diamond particles.
Abstract:
A system and method for making a thin sintered silica sheet is provided. The method includes providing a soot deposition surface and forming a glass soot sheet by delivering a stream of glass soot particles from a soot generating device to the soot deposition surface. The method includes providing a sintering laser positioned to direct a laser beam onto the soot sheet and forming a sintered glass sheet from the glass soot sheet by delivering a laser beam from the sintering laser onto the glass soot sheet. The sintered glass sheet formed by the laser sintering system or method is thin, has low surfaces roughness and/or low contaminant levels.