Abstract:
An implant delivery system has one or more interlock assemblies which connect the implant delivery catheter to the implant, an improved inner tubular member and an outer tubular member. The interlock assemblies, improved inner tubular member and outer tubular member cooperate to place the implant in tension during deployment, thereby reducing implant deployment force.
Abstract:
According to one aspect of the present invention, a fatigue resistant stent comprises a flexible tubular structure having an inside diameter, an outside diameter, and a sidewall therebetween and having apertures extending through the sidewall. According to other aspects of the invention, processes for making a fatigue resistant stent are disclosed. According to further aspects of the invention, delivery systems for a fatigue resistant stent and methods of use are provided.
Abstract:
A stent delivery system includes an expandable stent, a catheter, and a sheath. The expandable stent includes proximal and distal ends, and a first interlock structure. The catheter includes an elongated member having a second interlock structure displaceably arranged about an outer surface thereof for engaging the first interlock structure of the stent. The sheath is mounted on the elongated member and is positionable in a transport position in which the sheath covers the stent mounted on the elongated member and a deploy position in which the stent is exposed.
Abstract:
A stent delivery system includes an expandable stent, a catheter, and a sheath. The expandable stent includes proximal and distal ends, and a first interlock structure. The catheter includes an elongated member having a second interlock structure displaceably arranged about an outer surface thereof for engaging the first interlock structure of the stent. The sheath is mounted on the elongated member and is positionable in a transport position in which the sheath covers the stent mounted on the elongated member and a deploy position in which the stent is exposed.
Abstract:
An implant delivery catheter enables permanent modification of the implant length in the vicinity of the treatment site prior to radial expansion thereof. The implant is releasable carried between inner and outer tubular members of the delivery catheter which, upon repositioning relative to one another using an actuator mechanism, impart any of tensile, compressile or torquing forces to the implant causing permanent modification of the implant length. In one embodiment, the circumference of the implant is substantially similar both before and after modification of the implant length. In another embodiment, the implant includes a plurality of strut sections interconnected by bridges which are capable of the deformation along the longitudinal axis of the implant.
Abstract:
An implant delivery system has one or more interlock assemblies which connect the implant delivery catheter to the implant, an improved inner tubular member and an outer tubular member. The interlock assemblies, improved inner tubular member and outer tubular member cooperate to place the implant in tension during deployment, thereby reducing implant deployment force.
Abstract:
An implant including a first tubular medical device and a second tubular medical device coaxially disposed within the first tubular medical device. Each of the first and second tubular medical devices including a tubular body having a plurality of slits extending through a sidewall to form a plurality of first and second sidewall segments respectively. The radial expansion of the first tubular medical device forms an alternating pattern of flared first side wall segments and slits disposed adjacent to a body vessel wall. The radial expansion of the second tubular medical device forms an alternating pattern of flared second sidewall segments and slits. The second tubular medical device is rotationally aligned with the first tubular medical device such that the flared second sidewall segments at least partially cover the slits disposed adjacent the body vessel wall of the first tubular medical device.
Abstract:
An implant delivery catheter enables permanent modification of the implant length in the vicinity of the treatment site prior to radial expansion thereof. The implant is releasable carried between inner and outer tubular members of the delivery catheter which, upon repositioning relative to one another using an actuator mechanism, impart any of tensile, compressile or torquing forces to the implant causing permanent modification of the implant length. In one embodiment, the circumference of the implant is substantially similar both before and after modification of the implant length. In another embodiment, the implant includes a plurality of strut sections interconnected by bridges which are capable of the deformation along the longitudinal axis of the implant.
Abstract:
According to one aspect of the present invention, a fatigue resistant stent comprises a flexible tubular structure having an inside diameter, an outside diameter, and a sidewall therebetween and having apertures extending through the sidewall. According to other aspects of the invention, processes for making a fatigue resistant stent are disclosed. According to further aspects of the invention, delivery systems for a fatigue resistant stent and methods of use are provided.
Abstract:
An implant including a first tubular medical device and a second tubular medical device coaxially disposed within the first tubular medical device. Each of the first and second tubular medical devices including a tubular body having a plurality of slits extending through a sidewall to form a plurality of first and second sidewall segments respectively. The radial expansion of the first tubular medical device forms an alternating pattern of flared first side wall segments and slits disposed adjacent to a body vessel wall. The radial expansion of the second tubular medical device forms an alternating pattern of flared second sidewall segments and slits. The second tubular medical device is rotationally aligned with the first tubular medical device such that the flared second sidewall segments at least partially cover the slits disposed adjacent the body vessel wall of the first tubular medical device.