Abstract:
Described herein are flexible implantable devices or stents that can conform to the shape of vessels of the neurovasculature. In some embodiments, the devices can direct blood flow within a vessel away from an aneurysm or limit blood flow to the aneurysm. In some embodiments, a vascular remodeling device includes a first section and a protruding section. During deployment, the device expands from a compressed configuration to an expanded configuration. The first section anchors the device in an afferent vessel and/or in an efferent vessel of a bifurcation and the protruding section is positioned in the junction of the bifurcation having an aneurysm and across the neck of the aneurysm or at least partially within the aneurysm.
Abstract:
Detachment of an implant from a delivery assembly can be electrolytic. A distal end of a core member and a proximal end of an implant can be joined together by one or more weld joints disposed axially between the distal end and the proximal end, the one or more weld joints being further disposed at a radially outermost periphery of the distal end and a radially outermost periphery of the proximal end. Delivery of a detachable implant as described herein can include advancing, to a target location within a patient, an implant having a proximal end and being connected to a distal end of a core member by one or more weld joints, as described above, and separating the implant from the core member by corroding the one or more weld joints.
Abstract:
Detachment of a medical device from a delivery assembly can focus activity of electrolytic detachment to enhance detachment procedures. Electrolytic activity can be focused by insulating nearby areas of a core wire and pre-treating a detachment zone to reduce crystallinity of the detachment zone. Such a delivery system, can include an electrolytically corrodible core wire comprising a proximal portion, a distal portion, and a detachment zone between the proximal portion and the distal portion; a proximal insulating layer annularly contacting the proximal portion; a coil helically winding about and contacting at least a portion of the proximal insulating layer; a tube annularly contacting at least a portion of the helical coil; a distal insulating layer annularly contacting the distal portion; and a hub of an implant annularly contacting at least a portion of the distal insulating layer; wherein a distal end of the proximal insulating layer and a proximal end of the distal insulating layer are axially spaced apart to expose the detachment zone.
Abstract:
A medical device is provided. The medical device includes a vessel-engaging member attached to a distal end of a delivery wire via a connection mechanism. The vessel-engaging member includes a plurality of rows and a plurality of bridges positioned between each adjacent row, each of the bridges connecting a vertex of a first row with a corresponding vertex of a second row. The vessel-engaging member further includes first and second tapered sections coupled to the connection mechanism, each of the tapered sections projecting from a proximal row and tapering in a direction from the proximal row toward the connection mechanism, each of the tapered sections having a length measured along a longitudinal axis, wherein the length of the first tapered section is less than the length of the second tapered section.
Abstract:
An implant delivery system has one or more interlock assemblies which connect the implant delivery catheter to the implant, an improved inner tubular member and an outer tubular member. The interlock assemblies, improved inner tubular member and outer tubular member cooperate to place the implant in tension during deployment, thereby reducing implant deployment force.
Abstract:
An implant including a first tubular medical device and a second tubular medical device coaxially disposed within the first tubular medical device. Each of the first and second tubular medical devices including a tubular body having a plurality of slits extending through a sidewall to form a plurality of first and second sidewall segments respectively. The radial expansion of the first tubular medical device forms an alternating pattern of flared first side wall segments and slits disposed adjacent to a body vessel wall. The radial expansion of the second tubular medical device forms an alternating pattern of flared second sidewall segments and slits. The second tubular medical device is rotationally aligned with the first tubular medical device such that the flared second sidewall segments at least partially cover the slits disposed adjacent the body vessel wall of the first tubular medical device.
Abstract:
Vascular remodeling devices can include a proximal section, an intermediate section, and a distal section. During deployment, the proximal section can expand from a compressed delivery state to an expanded state and anchor the device in an afferent vessel of a bifurcation. The distal section expands from the compressed delivery state to an expanded state that may be substantially planar, approximately semi-spherical, umbrella shaped, or reverse umbrella shaped. The distal section is positioned in a bifurcation junction across the neck of an aneurysm or within an aneurysm. The intermediate section allows perfusion to efferent vessels. Before or after the device is in position, embolic material may be used to treat the aneurysm. The distal section can act as a scaffolding to prevent herniation of the embolic material. The device can be used for clot retrieval with integral distal embolic protection.
Abstract:
An implant delivery system has one or more interlock assemblies which connect the implant delivery catheter to the implant, an improved inner tubular member and an outer tubular member. The interlock assemblies, improved inner tubular member and outer tubular member cooperate to place the implant in tension during deployment, thereby reducing implant deployment force.
Abstract:
Described herein are flexible implantable devices or stents that can conform to the shape of vessels of the neurovasculature. In some embodiments, the devices can direct blood flow within a vessel away from an aneurysm or limit blood flow to the aneurysm. In some embodiments, a vascular remodeling device includes a first section and a protruding section. During deployment, the device expands from a compressed configuration to an expanded configuration. The first section anchors the device in an afferent vessel and/or in an efferent vessel of a bifurcation and the protruding section is positioned in the junction of the bifurcation having an aneurysm and across the neck of the aneurysm or at least partially within the aneurysm.
Abstract:
Vascular remodeling devices can include a proximal section, an intermediate section, and a distal section. During deployment, the proximal section can expand from a compressed delivery state to an expanded state and anchor the device in an afferent vessel of a bifurcation. The distal section expands from the compressed delivery state to an expanded state that may be substantially planar, approximately semi-spherical, umbrella shaped, or reverse umbrella shaped. The distal section is positioned in a bifurcation junction across the neck of an aneurysm or within an aneurysm. The intermediate section allows perfusion to efferent vessels. Before or after the device is in position, embolic material may be used to treat the aneurysm. The distal section can act as a scaffolding to prevent herniation of the embolic material. The device can be used for clot retrieval with integral distal embolic protection.