Abstract:
A variable coupled inductor comprises a first core having a first protrusion, a second protrusion, a third protrusion, a first conducting-wire groove and a second conducting-wire groove on the top surface of the first core, wherein the second protrusion is disposed between the first protrusion and the third protrusion, wherein a first conducting wire is disposed in the first conducting-wire groove, and a second conducting wire is disposed in the second conducting-wire groove, wherein a second core, disposed over the first core, wherein a magnetic structure is integrally formed with the second core and protruded on the bottom surface of the second core, wherein the bottom surface of the magnetic structure is located over the top surface of the second protrusion.
Abstract:
An electrical component is disclosed, wherein the electrical component comprises: a body and an electrode structure disposed on a first surface of the body, wherein the electrode structure comprises an inner metal layer and an outer metal layer, wherein a terminal of a conductive element of the electrical component is disposed between the inner metal layer and the outer metal layer, wherein the terminal of the conductive element of the electrical component is electrically connected to the inner metal layer and the outer metal layer for electrically connecting with an external circuit.
Abstract:
A variable coupled inductor comprises a first core having a first protrusion, a second protrusion, a third protrusion, a first conducting-wire groove and a second conducting-wire groove on the top surface of the first core, wherein the second protrusion is disposed between the first protrusion and the third protrusion, wherein a first conducting wire is disposed in the first conducting-wire groove, and a second conducting wire is disposed in the second conducting-wire groove, wherein a second core, disposed over the first core, wherein a magnetic structure is integrally formed with the second core and protruded on the bottom surface of the second core, wherein the bottom surface of the magnetic structure is located over the top surface of the second protrusion.
Abstract:
A magnetic device comprises a lead frame, a first core body and a coil. The lead frame has a first portion and a second portion spaced apart from the first portion. A first core body is disposed on the lead frame, wherein the first core body comprises a first through opening and a second through opening. A coil is disposed on the first core body, wherein the coil has a first terminal and a second terminal, wherein the first portion is electrically connected with the first terminal via the first through opening, and the second portion is electrically connected with the second terminal via the second through opening, respectively.
Abstract:
A magnetic device comprises a lead frame, a first core body and a coil. The lead frame has a first portion and a second portion spaced apart from the first portion. A first core body is disposed on the lead frame, wherein the first core body comprises a first through opening and a second through opening. A coil is disposed on the first core body, wherein the coil has a first terminal and a second terminal, wherein the first portion is electrically connected with the first terminal via the first through opening, and the second portion is electrically connected with the second terminal via the second through opening, respectively.
Abstract:
A variable coupled inductor includes a first core, two conducting wires, a second core and a magnetic structure. The first core includes two first protruding portions, a second protruding portion and two grooves, wherein the second protruding portion is located between the two first protruding portions and each of the grooves is located between one of the first protruding portions and the second protruding portion. Each of the conducting wires is disposed in one of the grooves. The second core is disposed on the first core. A first gap is formed between each of the first protruding portions and the second core and a second gap is formed between the second protruding portion and the second core. The magnetic structure is disposed between the second protruding portion and the second core and distributed symmetrically with respect to a centerline of the second protruding portion.
Abstract:
A multi-layer wiring structure includes a first conductive structure, a second conductive structure and an insulating layer. To manufacturing the multi-layer wiring structure, a first conductive structure and a second conductive structure are provided. The first conductive structure and the second conductive structure include a plurality of wiring patterns. Then, the insulating layer is disposed between the first conductive structure and the second conductive structure. The insulting layer is thinner than the first conductive structure or the second conductive structure. The first conductive structure, the insulating layer and the second conductive structure are laminated to form the multi-layer wiring structure. A planar magnetic element having a compact coil manufactured by the method is also provided.
Abstract:
For producing an inter-layer conductive structure of a circuit board, an insulating layer, a first conductive layer, a second conductive layer and an electric contact material are provided, wherein the insulating layer includes at least a conductive hole therein. The electric contact material is inserted into the conductive hole of the insulating layer to form a conductive plug, and the first and second conductive layers are laminated to opposite surfaces of the insulating layer, respectively. After lamination, the conductive plug has two ends thereof in electric contact with the first conductive layer and the second conductive layer, respectively.
Abstract:
An electrical component is disclosed, wherein the electrical component comprises: a body and an electrode structure disposed on a first surface of the body, wherein the electrode structure comprises an inner metal layer and an outer metal layer, wherein a terminal of a conductive element of the electrical component is disposed between the inner metal layer and the outer metal layer, wherein the terminal of the conductive element of the electrical component is electrically connected to the inner metal layer and the outer metal layer for electrically connecting with an external circuit.
Abstract:
A variable coupled inductor includes a first core, two conducting wires, a second core and a magnetic structure. The first core includes two first protruding portions, a second protruding portion and two grooves, wherein the second protruding portion is located between the two first protruding portions and each of the grooves is located between one of the first protruding portions and the second protruding portion. Each of the conducting wires is disposed in one of the grooves. The second core is disposed on the first core. A first gap is formed between each of the first protruding portions and the second core and a second gap is formed between the second protruding portion and the second core. The magnetic structure is disposed between the second protruding portion and the second core and distributed symmetrically with respect to a centerline of the second protruding portion.