Abstract:
A system and method are provided for common path pessimism removal or reduction (CPPR) in a timing database provided to guide transformative physical optimization/correction of a circuit design for an IC product to remedy operational timing violations detected in the circuit design. Pessimism is reduced through generation of a common path pessimism removal (CPPR) tree structure of branching nodes, and operational timing characteristics of each node. The CPPR tree structure is used to avoid exponential phases propagating in an exploratory manner through the system design, as well as the resultant memory footprint thereof. Additionally, back-tracing node-by-node through the circuit design for each and every launch and capture flip flop pair end point through each possible path thereof is avoided.
Abstract:
A system and method are provided for pessimism reduction of a timing database provided for optimization of a circuit design. Pessimism is reduced through generation of a hybrid graph-based static timing analysis (GBA) and path-based static timing analysis (PBA STA) database. PBA is selectively performed on the most critical GBA identified timing violations with the goal of reducing erroneous pessimism in operational timing characteristics passed on to the physical implementation corrective optimizer module to thereby reduce unnecessary fixing and transformations upon the circuit design to correspondingly reduce design time, temporary storage space, needed processing power for timing closure and to result in a finished operable and tangible circuit device with reduced area, power requirements, and decreased cost.