Abstract:
A static timing analysis system for finding timing violations in a digital circuit design prior to circuit fabrication, and associated methods, use infinite-depth path-based analysis (IPBA) to achieve reduced pessimism as opposed to systems or methods employing only graph-based analysis (GBA), but with greatly reduced compute time requirements, or greater logic path coverage, versus systems or methods employing conventional or exhaustive path-based analysis. IPBA achieves the improved coverage or compute time results by slotting nodes of a circuit design graph into stages, propagating phases stage-by-stage for all paths in parallel, and merging phases wherever possible during the analysis.
Abstract:
Various embodiments describe performing static timing analysis (STA) on a circuit design such that delay timing calculation results generated by an STA on the circuit design can be reused by subsequent STAs on the circuit design in place of performing a set of delay timing calculations on the circuit design.
Abstract:
Methods and systems provide setup and generation of SPICE results for a set of timing path(s) and integration of SPICE simulation with static timing analysis (STA) path-based results generation. In an embodiment, a method may select a candidate set of timing paths, perform path based analysis (PBA) on the selected paths, generate SPICE results for the selected paths, and render the PBA and SPICE results in an integrated user interface to facilitate sign off based on annotated constraints and correlation between STA results and SPICE results. Methods and systems of the present disclosure find application in, among other things, timing signoff in an electronic design and verification process.
Abstract:
The present disclosure relates to a computer-implemented method for use with an electronic design. Embodiments include identifying, using one or more processors, a plurality of sibling nets associated with the electronic design and determining if the plurality of sibling nets have a same input slew rate. If the plurality of sibling nets do not have a same input slew rate, embodiments also include determining a delay calculation (DC) for each of the plurality of sibling nets. If the plurality of sibling nets do have a same input slew rate, embodiments further include sharing a stored DC with the plurality of sibling nets.
Abstract:
A netlist of a multiple voltage circuit design having a plurality of power domains is established, then inter-power domain (IPD) paths traversing the circuit design are identified, according to whether they traverse multi-supply elements, or are clock paths capturing such a path. The netlist is then pruned to disable or remove cells or stages not traversed by an IPD path. A timing analyzer conducts a multi-domain timing analysis of the IPD timing paths in the pruned IPD netlist. Thereby, the circuit design is thoroughly tested according to the applicable ranges of voltage conditions without excessive runtime.
Abstract:
A system and method are provided for generating a structurally-aware timing model for operation of a predetermined circuit design. The timing model is generated to have a plurality of timing arcs representing timing characteristics of the circuit design. Additionally, terminal pairs of the circuit design are evaluated to determine characteristic structural weights for selected paths through the circuit design. The structurally-aware timing model may then be incorporated into a top-level hierarchical circuit design for timing analyses and pessimism removal to arrive at realistic timing characteristics. The structural weights are particularly helpful in an AOCV-type pessimism removal post-process.
Abstract:
Disclosed is an improved approach to implement timing signoff and optimization. Integrated MMMC timing closure functionality is provided in a single software session. The system provides the capability to perform signoff analysis, debugging, ECO, and TSO optimization for a large number of MMMC views in single software session.
Abstract:
A static timing analysis method for input/output modes of an integrated circuit design, that includes loading the integrated circuit design described in a hardware description language into a memory. An active zone for static timing analysis is defined, which comprises logic and interconnect between an input/output port and a selected level of sequential logic elements upstream from an input port and downstream from an output port. A description of the active zone is generated using the hardware description language. Then a static timing analysis is performed on the logic of the active zone.
Abstract:
A system and method are provided for pessimism reduction of a timing database provided for optimization of a circuit design. Pessimism is reduced through generation of a hybrid graph-based static timing analysis (GBA) and path-based static timing analysis (PBA STA) database. PBA is selectively performed on the most critical GBA identified timing violations with the goal of reducing erroneous pessimism in operational timing characteristics passed on to the physical implementation corrective optimizer module to thereby reduce unnecessary fixing and transformations upon the circuit design to correspondingly reduce design time, temporary storage space, needed processing power for timing closure and to result in a finished operable and tangible circuit device with reduced area, power requirements, and decreased cost.