Abstract:
The invention provides a method for creating a physical teeth model. The method comprises the following steps: providing a virtual three dimensional (3D) representation of a patient's dentition that comprises at least a region of the teeth that includes a tooth stump on which a crown is to be fitted or a region on to which a bridge is to be fitted; and preparing a physical model of the jaws of a subject from a blank, based on information from said virtual 3D image.
Abstract:
The invention provides a method for creating a physical teeth model. The method comprises the following steps: providing a virtual three dimensional (3D) representation of a patient's dentition that comprises at least a region of the teeth that includes a tooth stump on which a crown is to be fitted or a region on to which a bridge is to be fitted; and preparing a physical model of the jaws of a subject from a blank, based on information from said virtual 3D image.
Abstract:
A dental articulator is provided in which at least one of the two arms thereof has a base member that is articulated with respect to a bracket element onto which a dental model may be mounted, allowing independent movement of the dental model with respect to the pivot axis hingedly linking the arms.
Abstract:
A virtual model of an intraoral cavity is provided, wherein this process is initialized by a dental clinic, and the design and manufacture of a suitable dental prosthesis for the intraoral cavity is shared between a dental lab and a service center.
Abstract:
Improved dental models for use in dental procedures are provided. In one aspect, a unitary dental model of an intraoral cavity of a patient having a dental implant comprises a physical surface representative of gingival tissue of the patient. The model can comprise a channel shaped and oriented to receive an abutment corresponding to a physical abutment to be connected to the dental implant, in which the channel extends to an opening in the physical surface. The channel can comprise a first portion shaped to receive and constrain a corresponding structure of the abutment to a position and orientation and a second portion shaped to receive a fastener to couple the abutment to the unitary dental model. In many embodiments, the first portion comprises a shoulder shaped to receive the corresponding structure of the abutment in order to position the abutment along the channel.
Abstract:
A virtual model of an intraoral cavity is provided, wherein this process is initialized by a dental clinic, and the design and manufacture of a suitable dental prosthesis for the intraoral cavity is shared between a dental lab and a service center.
Abstract:
A 3D virtual model of an intra oral cavity in which at least a part of a finish line of a preparation is obscured is manipulated in virtual space by means of a computer or the like to create, recreate or reconstruct finish line data and other geometrical corresponding to the obscured part. Trimmed virtual models, and trimmed physical models, can then be created utilizing data thus created. The virtual models and/or the physical models may be used in the design and manufacture of copings or of prostheses.
Abstract:
A physical model of at least a portion of a patient's dentition has model dental surfaces corresponding to real dental surfaces of the patient's dentition. The physical model includes one or more targets, each configured for facilitating placement of an 5 orthodontic appliance on the model at a desired location. The targets lack mechanical stops that are outwardly protruding from the original model dental surfaces. Also provided are a method of manufacturing a physical model for use in indirect bonding procedures, a method for indirect bonding for use in an orthodontic procedure, a method for providing an indirect bonding transfer tray for use in an orthodontic procedure, and a 10 system for providing a physical model for use in indirect bonding orthodontic procedures.
Abstract:
A 3D virtual model of an intra oral cavity in which at least a part of a finish line of a preparation is obscured is manipulated in virtual space by means of a computer or the like to create, recreate or reconstruct finish line data and other geometrical corresponding to the obscured part. Trimmed virtual models, and trimmed physical models, can then be created utilizing data thus created. The virtual models and/or the physical models may be used in the design and manufacture of copings or of prostheses.
Abstract:
Feedback data useful in prosthodontic procedures associated with the intra oral cavity is provided. First, a 3D numerical model of the target zone in the intra oral cavity is provided, and this is manipulated so as to extract particular data that may be useful in a particular procedure, for example data relating to the finish line or to the shape and size of a preparation. The relationship between this data and the procedure is then determined, for example the clearance between the preparation and the intended crown. Feedback data, indicative of this relationship, is then generated, for example whether the preparation geometry is adequate for the particular type of prosthesis.