摘要:
Embodiments improve the ability of users of a social networking system to search for information that is likely to be relevant to them by learning and/or applying a search context associated with selector components used to search for objects of the social networking system. The search context is specific to the use of an individual selector and thus need not be as general as the context of an entire page or set of pages in which selectors can be embedded. The social networking system may learn the context of a selector by monitoring user selections from prior search results performed using the selector.
摘要:
Embodiments improve the ability of users of a social networking system to search for information that is likely to be relevant to them by learning and/or applying a search context associated with selector components used to search for objects of the social networking system. The search context is specific to the use of an individual selector and thus need not be as general as the context of an entire page or set of pages in which selectors can be embedded. The social networking system may learn the context of a selector by monitoring user selections from prior search results performed using the selector.
摘要:
Embodiments of the invention improve the ability of a social networking system to determine which types of data—hereinafter referred to as “fields”—are relevant to which types of user pages. Specifically, a social networking system assigns page types to different user pages, and likewise stores information on different types of fields. By analyzing the relationships of different pages and fields, the social networking system determines which types of fields are particularly well-suited for inclusion on different types of pages. Using the learned information about page types and field types, the social networking system can better aid page administrators in specifying data to add to their pages. For example, the social networking system can recommend to administrators the addition of certain types of fields or automatically add the fields. Further, the social networking system can specialize a search for social networking system data to field types.
摘要:
Embodiments of the invention improve the ability of a social networking system to determine which types of data—hereinafter referred to as “fields”—are relevant to which types of user pages. Specifically, a social networking system assigns page types to different user pages, and likewise stores information on different types of fields. By analyzing the relationships of different pages and fields, the social networking system determines which types of fields are particularly well-suited for inclusion on different types of pages. Using the learned information about page types and field types, the social networking system can better aid page administrators in specifying data to add to their pages. For example, the social networking system can recommend to administrators the addition of certain types of fields or automatically add the fields. Further, the social networking system can specialize a search for social networking system data to field types.
摘要:
A social networking system leverages user's social information to evaluate content submitted for inclusion in objects. If the evaluated submission is accepted, the submission is added to the content of an object. Accepted submissions are also used to predict associations between metadata and objects. Metadata is used to predict which objects will match user searches for information. The social networking system also provides a user interface configured to prompt users to submit information to objects. When a user completes a submission to an object, the user is provided with other options for groups of objects to contribute to. The objects offered are chosen to increase the likelihood that the user will choose to provide submissions to one of the provided objects.
摘要:
A social networking system leverages user's social information to evaluate content submitted for inclusion in objects. If the evaluated submission is accepted, the submission is added to the content of an object. Accepted submissions are also used to predict associations between metadata and objects. Metadata is used to predict which objects will match user searches for information. The social networking system also provides a user interface configured to prompt users to submit information to objects. When a user completes a submission to an object, the user is provided with other options for groups of objects to contribute to. The objects offered are chosen to increase the likelihood that the user will choose to provide submissions to one of the provided objects.
摘要:
Methods, systems, and media are provided for a dynamic batch strategy utilized in parallelization of online learning algorithms. The dynamic batch strategy provides a merge function on the basis of a threshold level difference between the original model state and an updated model state, rather than according to a constant or pre-determined batch size. The merging includes reading a batch of incoming streaming data, retrieving any missing model beliefs from partner processors, and training on the batch of incoming streaming data. The steps of reading, retrieving, and training are repeated until the measured difference in states exceeds a set threshold level. The measured differences which exceed the threshold level are merged for each of the plurality of processors according to attributes. The merged differences which exceed the threshold level are combined with the original partial model states to obtain an updated global model state.
摘要:
Methods, systems, and media are provided for a dynamic batch strategy utilized in parallelization of online learning algorithms. The dynamic batch strategy provides a merge function on the basis of a threshold level difference between the original model state and an updated model state, rather than according to a constant or pre-determined batch size. The merging includes reading a batch of incoming streaming data, retrieving any missing model beliefs from partner processors, and training on the batch of incoming streaming data. The steps of reading, retrieving, and training are repeated until the measured difference in states exceeds a set threshold level. The measured differences which exceed the threshold level are merged for each of the plurality of processors according to attributes. The merged differences which exceed the threshold level are combined with the original partial model states to obtain an updated global model state.